## Unit 2 Test Study Guide <br> (Functions \& Their Graphs)

Name: $\qquad$
Date: $\qquad$ Per: $\qquad$

Topic 1: Evaluating Functions

| For questions 1 and 2, evaluate the following, given $f(x)=\frac{x-2}{2 x+3}$. |  |  |
| :---: | :---: | :---: |
| 1. $f(9) \quad \frac{9-2}{2(9)+3}=\frac{7}{21}=\frac{1}{3}$ | 2. $f(x-1) \frac{x-1-2}{2(x-1)+3}$ | $\frac{x-3}{2 x+1}$ |
| For questions 3 and 4, evaluate the following, given $g(x)=3 x-x^{2}$. |  |  |
| $\begin{aligned} & \text { 3. } g(2 x-1) \\ & \begin{aligned} & 3(2 x-1)-(2 x-1)^{2} \\ &=6 x-3-\left(4 x^{2}-4 x+1\right) \\ &=-4 x^{2}+10 x-4 \end{aligned} \end{aligned}$ | $\text { 4. } \begin{aligned} &(-3 x) \\ & 3(-3 x)-(-3 x)^{2} \\ &=-9 x-9 x^{2} \\ &=-9 x^{2}-9 x \end{aligned}$ |  |
| For questions 5 and 6, evaluate the following, given $h(x)=\left\{\begin{array}{ll}\|-4 x+7\| & \text { if } x<-3 \\ -x^{3}+2 x^{2} & \text { if } x \geq-3\end{array}\right.$. |  |  |
| $\text { 5. } \left.\left.\begin{array}{rl} h(-7) \end{array} \begin{array}{l} \text { this expression because it is the } \\ \text { ong that foes with } \\ -4(-7)+7 \end{array} \right\rvert\, \begin{array}{l} -3 \end{array}\right)=\|28+7\|=35$ | $\text { 6. } \begin{aligned} & h(-3) \\ & -(-3)^{3}+2(-3)^{2} \\ & =27+18=45 \end{aligned}$ |  |

Topic 2: Parent Functions, Transformations, and Graphing
For each function family below, give the parent function and sketch the shape of its graph.


Your " shape will be upside down a
the ma. of
$(-2,7)$
19. Describe all transformations from the parent function given the function below.

$$
f(x)=-3\left(\frac{1}{2} x\right)^{3}+7
$$

- Vert stretch by 3
- Horiz stretch by 2
- Reflect in $x$-axis
- Translate up 7


## Graph each function and identify all key characteristics.

21. $f(x)=\frac{3}{x-4}-1$

22. $f(x)=2(x-3)^{2}-4$
$x$-int. is where it crosses the $x$-axis and $\mathrm{y}=0$
Set your equation equal to 0 and solve.
$0=2(x-3)^{2}-4$
$4=2(x-3)^{2}$
$2=(x-3)^{2}$

$$
\begin{aligned}
& \sqrt{2}=\sqrt{(x-3)^{2}} \\
& \pm \sqrt{2}=x-3
\end{aligned}
$$



| Domain: <br> $\{x \mid x \neq 4\}$ | Range: <br> $\{y \mid y \neq-1\}$ |
| :--- | :--- |
| $x$-int: $(7,0)$ | $y$-in: $(0,-1.75)$ |

## Extrema

| Increasing Interval: |
| :--- |
| None |
| Decreasing Interval: $(-\infty, 4),(4, \infty)$ |

End Behavior:
AS $x \rightarrow \infty, f(x) \rightarrow-1$
As $x \rightarrow-\infty, f(x) \rightarrow-1$
 Extrema
(3,-4) - Abs. Minimum Increasing Interval:


Decreasing Interval: $(-\infty, 3)$

## End Behavior:

AS $x \rightarrow \infty, f(x) \rightarrow \infty$
As $x \rightarrow-\infty, f(x) \rightarrow \infty$


Topic 3: Piecewise Functions
Identify the domain and range of each graph below. State the location and type of any discontinuties.


| $x \mid x \neq-3,5$ |
| :--- |
| Range: $\quad \mathbb{R}$ |
| Discontinuities: |
| $x=-3$; jump |
| $x=2$; jump |
| $x=5$; infinite |

25. 

| Domain: $\mathbb{R}$ |
| :--- |
| Range: $\{y l y<6\}$ |
| Discontinuities: |
| $x=-2$; jump |
| $x=1$; jump |

26. Graph the function below. Identify the domain and range, then, state the location and type of any discontinuties.

$$
f(x)= \begin{cases}-\frac{3}{2} x-6 & \text { if } x<-4 \\ -|x| & \text { if }-4 \leq x \leq 1 \\ \sqrt{x-1}+3 & \text { if } x>1\end{cases}
$$



Domain:

| $\mathbb{R}$ |
| :---: |
| Range: |
| $\{y \mid y \geq-4\}$ |
| Discontinuities: <br> $x=-4 j$ jump <br> $x=1 ; j u m p$ |

Topic 4: Average Rate of Change
Find the average rate of change of the function on the given interval.
27. $f(x)=2 x^{2}-3 x+1 ;[-3,2]$

$$
m=\frac{3-28}{2+3}=\frac{-25}{5}=-5
$$

28. $f(x)=\frac{2 x-1}{x+3} ;[-10,-5]$

$$
m=\frac{\frac{11}{2}-3}{-5+10}=\frac{\frac{5}{2}}{5}=\frac{1}{2}
$$

29. A football is kicked from a point on the ground such that its height $h(t)$, in feet, is given by the equation $h(t)=-16 t^{2}+80 t$, where $t$ is time in seconds. Find the average rate of change in the height of the ball from when it reaches its maximijumt height urifilifreaches $\$$ he ground $6 t^{2}$

$$
\begin{array}{ll}
t=\frac{-80}{2(-16)}=2.5 & {[2.5 .5]} \\
\operatorname{Max}:(2.5,100) & \frac{0-100}{5-2.5}=\frac{-100}{2.5}=-40 \mathrm{ft} / \mathrm{sec}
\end{array}
$$

$$
t-5=0
$$

Topic 5: Tests for Symmetry / Even \& Odd Functions
Use the graph to determine if the relations given below are symmetrical to the $x$-axis, $y$-axis, and/or origin. Confirm your answer algebraically.

31. $y=|2 x|-5$

$$
\begin{aligned}
& y=|2(-x)|-5 \\
& y=|-2 x|-5 \\
& y=|2 x|-5
\end{aligned}
$$


sym. to $y$-axis

## Determine whether the function below is even, odd, or nether. Prove your answer algebraically.

32. $f(x)=-3 x^{3}+5 x$

$$
\begin{aligned}
f(-x) & =-3(-x)^{3}+5(-x) \\
& =3 x^{3}-5 x
\end{aligned}
$$

33. $f(x)=5 x^{2}+2 x-1$

odd (sym. to origin)

Topic 6: Function Operations \& Compositions of Functions
Use $f(x)=3-2 x, g(x)=\sqrt{x+7}$, and $h(x)=x^{2}-5 x$ to find each function below. Be sure to state any domain restrictions, wherever necessary.
34. $(g+f)(x)$
$\sqrt{x+7}+3-2 x$

$D: x \geq-7$
35. $(h \cdot f)(x)$

36. $\left(\frac{f}{h}\right)(x)$

$D: X \neq 0,5$

Use $f(x)=-x^{2}-2 x, g(x)=\sqrt{x+7}$, and $h(x)=3 x-1$ to find each function below. Give the domain for each.
37. $(h \circ f)(x)$

$$
\begin{aligned}
& 3\left(-x^{2}-2 x\right)-1 \\
& =-3 x^{2}-6 x-1
\end{aligned}
$$

$D: \mathbb{R}$
38. $(f \circ g)(x)$

$$
\begin{aligned}
& -(\sqrt{x+7})^{2}-2(\sqrt{x+7}) \\
& =-(x+7)-2 \sqrt{x+7} \\
& =\frac{-x-7-2 \sqrt{x+7}}{D: x \geq-7}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 39. }(f \circ h)(x) \\
& -(3 x-1)^{2}-2(3 x-1) \\
& =-\left(9 x^{2}-6 x+1\right)-6 x+2 \\
& =\frac{-9 x^{2}+1}{D: \mathbb{R}}
\end{aligned}
$$

Given $\boldsymbol{h}(\boldsymbol{x})$ below, find two functions, $f$ and $g$, such that $(f \circ g)(x)=\boldsymbol{h}(x)$.
40. $h(x)=\frac{5}{x-9}-2$ The value of $g(x)$ will be pu into $f(x)$
$f(x)=\frac{5}{x}-2$ Take the expression with

$$
g(x)=x+5
$$ the $x$ value in it and $g(x)=x+5$ $g(x)=x-9 \quad$ make it $g(x)$ then rewrite

41. $h(x)=-\sqrt{2(x+5)}+7$

$$
f(x)=-\sqrt{2 x}+7
$$

$$
f(x) \text { using just " } x \text { " }
$$

Use $f(x)=|10-2 x|, g(x)=\sqrt[3]{2 x-3}$, and $h(x)=\frac{1}{2} x+5$ to evaluate each function below.

$$
\begin{array}{|l|l|}
\hline \text { 42. }(g-f)(15) & \text { 43. }\left(\frac{h}{g}\right)(-12) \\
g(15)=\sqrt[3]{2(15)-3}=3 & h(-12)=\frac{1}{2}(-12)+5=-1 \\
f(15)=|10-2(15)|=20 & g(-12)=\sqrt[3]{2(-12)-3}=-3 \\
3-20=-17 & \frac{-1}{-3}=\frac{1}{3}
\end{array}
$$

Topic 7: Inverse Functions
Determine if the graph represents a one-to-one function.

Determine if $f(x)$ has an inverse, if yes, find $f^{1}(x)$. State any restrictions in the domain.
48.

$$
\begin{aligned}
& f(x)=\sqrt[3]{x-7}+2 \\
& x=\sqrt[3]{y-7}+2 \\
& x-2=\sqrt[3]{y-7} \\
& (x-2)^{3}=y-7 \\
& f^{-1}(x)=(x-2)^{3}+7
\end{aligned}
$$

50. $f(x)=4 x^{2}-7 ; x \geq 0$

$$
x=4 y^{2}-7
$$

$$
x+7=4 y^{2}
$$

$$
\frac{x+7}{4}=y^{2} \frac{f^{-1}(x)=\sqrt{\frac{x+7}{4}}}{x \geq-7}
$$

49. $f(x)=2|x+5|$

No Inverse;

fails Horiz. Line Test

Prove $f(x)$ and $g(x)$ are inverses both algebraically and graphically.
52. $f(x)=\frac{4}{x}-2$

$$
g(x)=\frac{4}{x+2}
$$

$$
\begin{aligned}
& (f \circ g)(x)=\frac{4}{\frac{4}{x+2}}-2=x+2-2=x \\
& (g \circ f)(x)=\frac{4}{\frac{4}{x}-2+2}=\frac{4}{\frac{4}{x}}=x
\end{aligned}
$$



