Solving Logarithmic © Exponential Equations

Solve each equation. Remember to show your work. You may use scratch paper if necessary. Match an answer from an exponential equation with an answer from a logarithmic equation. Then color accordingly.
Enjoy! :)

A. $4^{-4 x+5}+2=18$	Green $\log _{5}(3 x+8)=\log _{5}(6 x-5)$
$\begin{aligned} & \text { B. } \\ & 2+81^{x-2}=11 \end{aligned}$	Purple $\log _{4}(12 x+4)=3$
C. $25^{x+3}+10=35$	Yellow $\log _{7}(16 x+9)=2$
D. $6^{3 x+7}=36^{x+6}$	$\begin{aligned} & \operatorname{Red} \\ & \log _{3}(8 x-3)=3 \end{aligned}$
E. $4^{x+3}=16^{2 x-5}$	Pink 16
F. $8^{x-6}=\frac{1}{2^{5 x-12}}$	Brown $\log _{2}(8)+\log _{2}(2-7 x)=7$

Solving Logarithmic \& Exponential Coloring Sheet
Equations

Solvin@ logarithmic Equekions

$\ln 2 x=9$

Solving Exponential Equaßtons

(1)	Rewrite the equation using a common base.
2	Use the properties of exponents to simplify each side of the equation.
3	Use the one-to-one property: If $b^{x}=\boldsymbol{b}^{y}$, then $\quad x=y$
4	Solve!

$3^{2 x-9}=3^{7}$
$e^{4 x-1}=e^{5-2 x} \quad 9^{4 x-26=81} \quad 2 x=32^{x+3}$

LOGARITHMIC \& EXPONENTIAL EQUATIONS Rerreou!

LOGARITHMIC EQUATIONS

1. $\log _{7}(x+13)=\log _{7}(3-x)$
2. $\log _{2}\left(n^{2}+13\right)=\log _{2}(n-1)+\log _{2}(n+3)$
3. $2 \cdot \ln (a+3)=\frac{1}{4} \cdot \ln 16+\ln (a+7)$
4. $\log (3 c+4)-\log (c-6)=\log (c+6)$
5. $\log _{2}(5 v+23)-9=-2$
6. $\log _{16}(p+5)-\log _{16}(p-2)=\frac{1}{2}$
7. $\ln (r+1)+3 \cdot \ln 2=7$
8. $\frac{1}{3} \cdot \log _{9} 64+2 \cdot \log _{9} n=2$

EXPONENTIAL EQUATIONS

9. $\left(\frac{1}{27}\right)^{2 x-6}=9^{x-1}$
10. $4^{3 m+1}=\left(\frac{1}{8}\right)^{m+4} \cdot 32^{m-2}$
11. $5^{w-1}=90$
12. $e^{3 r-2}-16=120$
13. $-4 \cdot 9^{2 k+5}+14=6$
14. $\frac{2}{3} \cdot 5^{m-8}-9=21$
15. $3^{4 x+1}=8^{x-5}$
16. $4^{2 x+3}=7^{15-2 x}$

MONETARY GROWTH

You inherit $\$ 5,000$ from your long lost Uncle Harold. The bad news is that the money must sit in a bank account for the next ten years until you can use it. The account earns 7.2% interest, compounded annually. This means that you will need to multiply the amount of money by 1.072 to determine how much money remains at the end of the next year.

Fill in the chart below to determine how much money is in the account at the end of each year.
Round to the nearest penny!

\# of years	0	1	2	3	4	5	6
in account							

Use the chart above to create a graph.

- According to the chart, approximately when will your original inheritance double in size?

Uncle Harold Formula:
Use this formula to find the balance (the amount of money that would be in the account) at the end of ten years. equation: \qquad balance: \$ \qquad

Use this formula to find the balance if you let all of the money earn interest for 20 years. (Show work below.) equation: \qquad balance: \$ \qquad

Plot these two points on the Uncle Harold's Cash Graph and connect all of the points on the graph. Label this line: "My Money"

You are surprised to learn that your brother also received money from Uncle Harold. He only received \$4000, but his account is earning 12% interest, compounded monthly.

Write the equation that represents the money in your brother's account over time.

Fill in the chart below, using the equation above. Remember that you should type ($n \cdot t$) in parenthesis!

\# of years	0	2	4	6	8	10	12
\$ in account							

Plot the points on the Uncle Harold's Cash graph. Connect the points with a line, and label it: "BRO'S MONEY".
Approximately when will your brother's account have more money than yours?
Between \qquad and \qquad years.

How much more money will your brother's account have than yours if you both leave the money in the accounts for 20 years?
\qquad

