Veckors						
Main Ideas/Questions	Notes/Examples					
	a quantity that has both magnitude (size) AND					
VECTOR	direction.					
GEOMETRICAL Representation	A vector can be represented geometrically using a directed line segment: - P is the \qquad intial point or tall. - Qis the \qquad terminal (end) point orfip.					
NAMING VECTORS	- Vectors are denoted using the \longrightarrow symbol. \qquad - Vector $P Q$ above can be named as $\overrightarrow{P Q}, \vec{p}$, or \mathbf{p} a boldface lowercase letter).					
MAGNITUDE	Given a vector \mathbf{v} with initial point $\left(x_{1}, y_{1}\right)$ and terminal point $\left(x_{2}, y_{2}\right)$, the magnitude of $\mathbf{v},\\|\mathbf{v}\\|$, can be found using the distance formula:$\\|v\\|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$					
	Find the magnitude of each vector.					
	$\begin{aligned} & \text { 1. } \overline{A B} \\ & \\| A \text { with } A(8,-4) \text { and } B(-7,-2) \\ & \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\ & \sqrt{(-15)^{2}+(2)^{2}} \\ & \sqrt{229} \text { or } 15.13 \end{aligned}$	2. $\overline{R S}$ with $R(-3,10)$ and $S(5,6)$				
** Think of your vector as being on the coordinate plane. If you created a right triangle, the vector would be the hypotenuse.	3. $\overline{P Q}$ with $P(-8,6)$ and $Q(2,-9)$	4. $\overline{E F}$ with $E(-1,-5)$ and $F(-6,-7)$				
ZEROVECTOR	a vector with a magn	nitude (size) of zerol				

Vectors: @t口home work

Directions: Find the magnitude of each vector. Distance formulal

1. $\overline{V W}$ with $V(3,-2)$ and $W(5,2)$	2. $\overrightarrow{L M}$ with $A(6,2)$ and $B(-2,-7)$
3. $\overrightarrow{A B}$ with $A(2,3)$ and $B(-7,1)$	4. $\overrightarrow{E F}$ with $E(-8,8)$ and $F(-10,-2)$

Directions: Use the graph below to classify each pair of vectors.

5. \mathbf{a} and \mathbf{e}	$6 . \mathbf{c}$ and \mathbf{f}
7. \mathbf{f} and \mathbf{g}	8. b and \mathbf{e}
9. \mathbf{c} and \mathbf{d}	$10 . \mathrm{d}$ and \mathbf{h}

Directions: Use the distance and slope formula to determine whether $\overline{A B}$ and $\overline{C D}$ are equivalent.
11. $\overrightarrow{A B}$ with $A(4,8)$ and $B(6,-9)$; $\overrightarrow{C D}$ with $C(-3,11)$ and $D(-1,-6)$
12. $\overrightarrow{A B}$ with $A(1,2)$ and $B(-1,-5) ; \overrightarrow{C D}$ with $C(-8,-1)$ and $D(-6,-8)$

Directions: Give the component form, magnitude, and direction angle for each vector.

14. $\mathbf{d}=\langle-1,7>$
16. $\overline{P Q}$ with $P(-3,3)$ and $Q(-11,-1)$
15. $\overline{C D}$ with $C(-8,7)$ and $D(2,-5)$

Component Form:	dist. form. $\tan \theta$		Component Form:	Magnitude:	
	Magnitude:	Direction Angle:			Direction Angle:
17. $\overline{J K}$ with $J(-6,9)$ and $K(-5,14)$			18. $\overline{X Y}$ with $X(4,-3)$ and $Y(-3,-1)$		
Component Form:	Magnitude:	Direction Angle:	Component Form:	Magnitude:	Direction Angle:
19.			20.		
Component Form:	Magnitude:	Direction Angle:	Component Form:	Magnitude:	Direction Angle:

Vectops with "Natt Stuffn

MULTIPLYING by a scalar	A vector can be multiplied by a real number k, called a scalar. This will change the magnitude of the vector. If k is negative, the vector will reverse to the opposite direction. The figure to the right shows various scalars of vector \mathbf{v}.		
ADDING Vectorg	A geometric representation of the addition of two vectors, \mathbf{v} and \mathbf{w}, is shown to the right. The vectors are positioned so that the tip of \mathbf{v} coincides with the tail of w. The sum of the vectors $\mathbf{v}+\mathbf{w}$, called the resultant, extends from the tail of \mathbf{v} to the tip of \mathbf{w}.		
SUBTRACTING Vectorg	The difference of two vectors \mathbf{v} and \mathbf{w} is defined as $\mathbf{v - w}=\mathbf{v}+(-\mathbf{w})$. A geometric representation of the difference $\mathbf{v}-\mathbf{w}$ is shown to the right using the same "tip-to-tail" model shown above.		
VECTOR OPERATION Ruber	If $\mathbf{v}=\left\langle a_{1}, b_{1}\right\rangle$ and $\mathbf{w}=\left\langle a_{2}, b_{2}\right\rangle$ are vectors and k is a real number, then:		
	SCALAR MULTIPLCATION	$k v=\left\langle k a_{1}, k b_{1}\right\rangle$	
	ADDITION	$v+w=\left\langle a_{1}+a_{2}, b_{1}+b_{2}\right\rangle$	
	SUBTRACTION	$v-w=\left\langle a_{1}-a_{2}, b_{1}-b_{2}\right\rangle$	
Examples	Find each of the following for $\mathrm{a}=\langle-6,2\rangle, b=\langle 1,7\rangle$, and $\mathrm{c}=\langle-4,5\rangle$.		
	$\begin{aligned} & \text { 1. } 2 \mathrm{c} \\ & \quad<2(-4), 2(5)\rangle \\ & =\langle-8,10\rangle \end{aligned}$	$\begin{aligned} & \text { 2. } \mathbf{a + b} \quad a:<-6,2\rangle b:<1,7\rangle \\ & a+b=<-6+1,2+7\rangle \\ & =\langle-5,9\rangle \end{aligned}$	
	3. $\mathbf{c - b}$	4. $\mathbf{a}-3 \mathrm{c}$	

$\mathrm{u}=\frac{1}{\substack{\|\mathrm{v}\|}} \frac{\mathrm{v}}{1}$ megnuve \& direction

You can think of unit vectors a bit like finding an equivalent fraction it has the same value, just a different way of writing it!

Vectors ion Terms of Trigonometry

Main Ideas/Questions	Notes/Examples	
STANDARD UNIT VECTORS	The standard unit vectors, \mathbf{i} and \mathbf{j}, are positioned along the x - and y-axis, and defined as: $\underset{\text { Direction on the x-axis }}{\mathbf{i}=} \mathbf{j}=\frac{\langle 0,1\rangle}{\text { Direction on the } \mathbf{y} \text {-axis }}$	
COMBINATIONS of i and j	Any vector $\mathbf{v}=\langle a, b\rangle$ can be written in the form $a i+b j$ \qquad This is called q linear combination of vectors \mathbf{i} and \mathbf{j}. Follow the steps below to prove $\mathbf{v}=\langle\boldsymbol{a}, \boldsymbol{b}\rangle=\boldsymbol{a i}+\boldsymbol{b} \mathbf{j}$. Rewrite the vector $v=\langle 2,5\rangle$ as a linear combination of i and j. $v=2 i+5 j$	
TRIGONOMETRIC FORMS of a Unit Vector	- If \mathbf{u} is a unit vector, then the terminal point of \mathbf{u} lies on the \qquad Unit circle - Therefore, $\mathbf{u}=\langle a, b\rangle$ can be written as: \qquad $u=\langle\cos \theta, \sin \theta\rangle$, or as the linear combination $u=\langle\cos \theta i, \sin \theta j\rangle$	

| TRIGONOMETRIC FORMS of any Vector | Because every vector \mathbf{v} is the product of its magnitude $\\|v\\|$ and its corresponding unit vector \mathbf{u}, we can wite $\mathbf{v} \mathbf{i}$ in the following forms: | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| | $v=\\|v\\| u=\\|v\\|\langle\cos \theta, \sin \theta\rangle \quad\langle\\|v\\| \cos \theta,\\|v\\| \sin \theta\rangle$. |
| | or as the linear combination $\langle\\|\\|v\\|(\cos \theta) i\\| v,\\|\\|(\sin \theta) j\rangle$ |

Given: magnitude Use:

- dist. formula to find $\|v\|$
- $\tan ^{-1}$ to find θ (direction)
- then, plug into $\|v\|\langle v \cos \theta, v \sin \theta\rangle$
- Vector gives you the points in 2 directions,
- If you draw it, it creates a right triangle
- Tangent = Opposite/adjacent

13. $\overline{A B}$ with $A(-1,7)$ and $B(-9,3)$ $\overrightarrow{A B}=\langle-8,-4\rangle$
$\|\overrightarrow{A B}\|=\sqrt{(-8)^{2}+(-4)^{2}}=\sqrt{80}=4 \sqrt{5}$

- Find vector $(\Delta x, \Delta y)$
- dist formula to find $\|v\|$
- $\tan ^{-1}$ to find θ (direction
- then, plug into $\|v\|\langle v \cos \theta, v \sin \theta\rangle$

Directions: Write each vector in trigonometric form.

9. $\mathbf{v}=\langle 15,8\rangle$	10. $\mathrm{m}=\langle-3 \sqrt{2},-\sqrt{6}\rangle$

$\|v\|=\sqrt{15^{2}+8^{2}}=\sqrt{281}=17$
$\tan \theta=\frac{8}{15} ; \quad \theta=28.07^{\circ}$
$N=\left\langle 17 \cos 28.07^{\circ}, 17 \sin 28.07^{\circ}\right\rangle$
r
$\mathrm{V}=17\left\langle\cos 28.07^{\circ}, \sin 28.07^{\circ}\right\rangle$
12. $r=-2 i+2 j$ $\|r\|=\sqrt{(-2)^{2}+2^{2}}=\sqrt{8}=2 \sqrt{2}$ $\tan \theta=-1 ; \theta=135^{\circ}$
14. $\overline{Y Z}$ with $Y(3,-2)$ and $Z(5,-8)$

An airplane is flying at a bearing of 245° at 550 mph . Give the velocity of the airplane as a vector in component form.

$$
\begin{aligned}
& v=\left\langle 550 \cos 205^{\circ}, 550 \sin 205^{\circ}\right\rangle \\
& v=\langle-498.47,-232.44\rangle
\end{aligned}
$$

A man pushes a lawnmower with a force of 25 pounds uphill at an angle of 40°. Give the force exerted on the lawnmower as a vector in component form.

If 2 or more forces are acting on an object, is the_ sum of the 2 vectors

i
8. Two forces, with magnitudes of 85 pounds and 120 pounds, are acting on an object at angles of 35° and 140°, respectively, with the positive x-axis. Find the magnitude and direction (to the positive x-axis) of the resultant force.
10. An airplane is traveling at a speed of 500 miles per hour at a bearing of 325°. Once the airplane reaches a certain point, it encounters a wind velocity of 60 miles per hour in the direction of $\mathrm{N} 75^{\circ} \mathrm{W}$. Find the resultant speed and direction (as a true bearing) of the airplane.
$V_{1}=\left\langle 500 \cos 125^{\circ}, 500 \sin 125^{\circ}\right\rangle$
$V_{2}=\left\langle 60 \cos 165^{\circ}, 60 \sin 165^{\circ}\right\rangle$
$v_{1}+v_{2}=\langle-344.74,425.11\rangle$
$\left\|v_{1}+v_{2}\right\|=\sqrt{(-344.74)^{2}+425.11^{2}}=547.32 \mathrm{mph}$
$\tan \theta=-\frac{425.11}{344.74} ; \theta=320.96^{\circ}$
11. A baseball player runs forward at 15 feet per second and throws a baseball at a velocity of 80 feet per second at an angle of 20° with the horizontal. What is the resultant speed and direction of the throw?

Usỉng Trig to Find Misissing Components

Putting it all Together

For each vector, give its (a) component form, (b) magnitude, and (c) direction angle.

1. $\overrightarrow{A B}$ with $A(-7,4)$ and $B(-1,-4)$
2. $\overline{R S}$ with $R(4,-3)$ and $S(2,9)$
3. a) \qquad
b) \qquad
c) \qquad
4. a) \qquad
b) \qquad
c) \qquad
5. a) \qquad
b) \qquad
c) \qquad

Find each of the following for $r=\langle-6,-4\rangle, s=\langle-2,7\rangle$, and $t=\langle 5,-1\rangle$.
4. $3 \mathbf{t}-\mathbf{r}$
5. $\frac{5}{2} r+4 s$
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad

Give each vector as a linear combination in terms of unit vectors \mathbf{i} and \mathbf{j}.
7. $\mathbf{c}=\langle-1,-3\rangle$
8. $\overrightarrow{J K}$ with $J(-6,1)$ and $K(-2,-8)$

Write the vector in component form given its magnitude and direction angle.
9. $\|v\|=14 ; \theta=135^{\circ}$
10. $\|k\|=3.5 ; \theta=210^{\circ}$
9. \qquad
10. \qquad

Give the trigonometric form of each vector.
11. $\mathbf{p}=\langle 2 \sqrt{6},-2 \sqrt{2}\rangle$
11. \qquad
12. \qquad
12. $\mathbf{v}=5 \mathbf{i}+12 \mathbf{j}$
13. \qquad
13. $\overline{X Y}$ with $X(1,5)$ and $Y(-1,-9)$
14. Two construction workers are lifting a beam using ropes. Worker A pulls with a force of 500 newtons at an angle of 40° with the positive x-axis. Worker B is on the opposite side pulling with a force of 380 newtons at an angle of 115° with the positive x-axis. Find the (a) magnitude and (b) direction angle of the resultant force.
15. A boat is sailing at a bearing of 140° with a speed of 26 mph . It hits a current of 8 mph at a bearing of 195°. Find the resultant
14. a) \qquad
b) \qquad
15. a) \qquad
b) \qquad
16. a) \qquad
b) \qquad (a) magnitude and (b) direction (as a true bearing) of the boat.
16. Josh is swimming in a lake at a speed of 4 feet per second in the direction of $\mathrm{N} 24^{\circ} \mathrm{W}$. Find the magnitude of the (a) horizontal component and (b) vertical component.

