	Vectors		
Main Ideas/Questions	Notes/Examples		
VECTOR	a quantity that has both direction.	n magnitude (size) AND	
GEOMETRICAL Representation	A vector can be represented geo using a directed line segm • <i>P</i> is the <u>initial point</u> • <i>Q</i> is the <u>terminal (end) po</u>	p , or tail.	
NAMING Vectors	 Vectors are denoted using the Vector <i>PQ</i> above can be named lowercase letter). 		
MAGNITUDE	Given a vector v with initial point (x ₁ , y ₁) and terminal point (x ₂ , y ₂), the magnitude of v , $\ \mathbf{v}\ $, can be found using the distance formula: $\ \mathbf{v}\ = \sqrt{(\mathbf{x}_2 - \mathbf{x}_1)^2 + (\mathbf{y}_2 - \mathbf{y}_1)^2}$		
B(-7,-2) 15 2 A(8,-4)	Find the magnitude of each vector. 1. \overline{AB} with $A(8, -4)$ and $B(-7, -2)$ $ AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $\sqrt{(-15)^2 + (2)^2}$ $\sqrt{229}$ or 15.13	2. <i>RS</i> with <i>R</i> (-3, 10) and <i>S</i> (5, 6)	
** Think of your vector as being on the coordinate plane. If you created a right triangle, the vector would be the hypotenuse.	3. \overline{PQ} with <i>P</i> (-8, 6) and <i>Q</i> (2, -9)	4. <i>EF</i> with <i>E</i> (-1, -5) and <i>F</i> (-6, -7)	
ZERO VECTOR	a vector with a magr	nitude (size) of zerol.	

	PARALLEL VECTORS	EQUIVALENT VECTORS	OPPOSITE VECTORS
TYPES OF Vectors	Same or opposite direction, but not necessarily the same magnitude.	Same magnitude and direction.	Same magnitude but opposite directions. The opposite of vector a is written as -a .
	a b allb	m n m=n	U V V= -U
	Use the graph below to a	classify each pair of vecto	ors.
		5. a and e	opposite
		d 6. i and f	equal
		7. d and e	parallel
	i e g	8. b and g	none
		9. c and h	opposite
		ors are equivalent if they h ude (use the distance forr	
Proving Vectors are	-	n (use the slope formula)	
EQUIVALENT	Determine whether \overrightarrow{AB} terminal points.	and \overrightarrow{CD} are equivalent g	iven their intial and
	10. \overline{AB} with $A(-6, -7)$ and $\ \overline{AB}\ = \sqrt{(-2+b)^2 + (b^2)^2}$	$(-2, 3); \overline{CD} \text{ with } C(2, -1)$ $(-2, 3); \overline{CD} \text{ with } C(2, -1)$ $(-2, 3); \overline{CD} \text{ with } C(2, -1)$ $(-2, 3); \overline{CD} \text{ with } C(2, -1)$	0) and $D(6, 0)$
	= 1116 - 252	29	
	$\ cb\ = \sqrt{(4-2)^2 + (0+1)^2}$	·(0)	$\frac{1}{-2} = \frac{10}{4} = \frac{5}{2}$
	$=\sqrt{116} = 2\sqrt{10}$	29 E	quivalent

Vectors: at-home work

Directions: Find the magnitude of	f each vector.	Distance form	ula!
1. <i>VW</i> with <i>V</i> (3, -2) and <i>W</i> (5, 2)		2. <i>LM</i> with <i>A</i> (6, 2	2) and <i>B</i> (-2, -7)
3. AB with A(2, 3) and B(-7, 1)		4. <i>EF</i> with <i>E</i> (-8,	8) and F(-10, -2)
Directions: Use the graph below t		air of vectors.	
	5. a and e		6. c and f
	7.fandg		8. b and e
	9. c and d		10. d and h
Directions: Use the distance and	slope formula to	determine wheth	her \overline{AB} and \overline{CD} are equivalent.
11. \overrightarrow{AB} with $A(4, 8)$ and $B(6, -9);$	CD with C(-3, 11)	and <i>D</i> (-1, -6)	
12. <i>AB</i> with <i>A</i> (1, 2) and <i>B</i> (-1, -5);	<i>CD</i> with <i>C</i> (-8, -1)	and <i>D</i> (-6, -8)	

Vectors with "Math Stuff"

MULTIPLYING by a Scalae	A vector can be m number k, called a scala magnitude of the vector vector will reverse to the The figure to the right s of vector	ar. This will change the br. If <u>k is negative, the</u> be opposite direction. shows various scalars	$\frac{v}{2v}$ $\frac{1}{2}$ $\frac{v}{2v}$ $\frac{1}{2}$ $\frac{v}{2v}$ $\frac{1}{2}$ $\frac{v}{2v}$ $\frac{v}{2v}$ $\frac{v}{2v}$
ADDING Vectors	A geometric representative vectors, \mathbf{v} and \mathbf{w} , The vectors are position coincides with the tail vectors $\mathbf{v} + \mathbf{w}$, called time from the tail of \mathbf{v}	is shown to the right. ed so that the tip of v of w . The sum of the he resultant , extends	V + W
SUBTRACTING Vectors	The difference of two defined as v - w = v + representation of the dif to the right using the model show	• (-w). A geometric ference v – w is shown s same "tip-to-tail"	V - W
	If $\mathbf{v} = \langle a_1, b_1 \rangle$ and $\mathbf{w} = \langle a_1, b_2 \rangle$	<a2, b2=""> are vectors and</a2,>	d <i>k</i> is a real number, then:
VECTOR	SCALAR MULTIPLCATION	kv = < Ka1	, Kb, 7
OPERATION Ruley	ADDITION $v + w = \langle a_1 + a_2, b_1 \rangle$		az, b1+b27
	SUBTRACTION	$\mathbf{v} - \mathbf{w} = \langle \mathbf{Q}_{ } - \mathbf{Q}_{ }$	· az, b1-b27
	Find each of the followin	ig for a = $\langle -6, 2 \rangle$, b = $\langle 1, 2 \rangle$	7 \rangle , and c = \langle -4, 5 \rangle .
Examples	1. 2c	2. a + b	a:<-6, 2> b:<1, 7>
	< 2(-4), 2(5) >	a+b=<	<-6+1 , 2+7>
	= < -8, 10>	=<-5,	9 >
	3. c-b	4. a – 3c	

UNIT Vectors	 A vector with a magnitude of 1 is called a unit vector. Given any non-zero vector v, a unit vector u in the same direction of v can be written using the following rule: 	$\begin{array}{c} y \\ \mathbf{u} \\ \mathbf{v} $
$\mathbf{u} = \frac{1}{ \mathbf{v} } \frac{\mathbf{v}}{1}$. & direction You can think of unit vecto	rs a bit like finding

an equivalent fraction. It has the same value, just a different way of writing it!

Vectors in Terms of Trigonometry

Main Ideas/Questions	Notes/Examples
STANDARD Unit vectors	The standard unit vectors, i and j, are positioned along the x- and y-axis, and defined as: $i = \frac{\langle 1, 0 \rangle}{\text{Direction on the x-axis}} j = \frac{\langle 0, 1 \rangle}{\text{Direction on the y-axis}} $
LINEAR COMBINATIONS of i and j	Any vector $\mathbf{v} = \langle a, b \rangle$ can be written in the form <u>ai + bj</u> . This is called a linear combination of vectors i and j . Follow the steps below to prove $\mathbf{v} = \langle a, b \rangle = a\mathbf{i} + b\mathbf{j}$. Rewrite the vector $\mathbf{v} = \langle 2, 5 \rangle$ as a linear combination of i and j . $\mathbf{v} = 2\mathbf{i} + 5\mathbf{j}$
TRIGONOMETRIC FORMS of a Unit Vector	 If u is a unit vector, then the terminal point of u lies on the Unit_Circle Therefore, u = <a, b=""> can be written as: U=(cosθ, sinθ), or as the linear combination U=(cosθi, sinθj).</a,>

TRIGONOMETRIC	Because every vector \mathbf{v} is the product of its magnitude $\ \mathbf{v}\ $ and its corresponding unit vector \mathbf{u} , we can write \mathbf{v} in the following forms:
FORMS	$\mathbf{v} = \ \mathbf{v}\ \mathbf{u} = \frac{\ \mathbf{v}\ \langle \cos\theta, \sin\theta \rangle}{\langle \ \mathbf{v}\ \cos\theta, \ \mathbf{v}\ \sin\theta \rangle}$,
of any Vector	or as the linear combination $(v (\cos\theta) i v (\sin\theta) j$.

Finding Your Way

Main Ideas/Questions	Notes/Examples		
The direction of a vector can also be given as a bearin Bearings are frequently given in application problems			
BEARINGS & Direction	vector and a north-south	e acute angle between a n line, or <i>y</i> -axis. The vecto uth and is written as S 60° f	r to
Note: When a degree measure is given with no additional directions, it is assumed to be a true bearing.	the north to the vector.	e measured <i>clockwise</i> from The true bearing of the ve bearings are written with the of 15° is written as 015°.	ctor 60°
	For each vector, give the quadrant bearing and the true bearing.		
acute	$^{1.}$	2. $2 2^{0} - 80^{0} = 32^{0}$ $2 2^{0}$ 32^{0} 58^{0} $90^{0} - 32^{0} = 58^{0}$ true	3 .
acute anale	Quadrant bearing: N 5 ⁰ E	Quadrant bearing: $\$580$ W	Quadrant bearing: $\S580W$
three diaits!	True bearing: 005 ⁰	True bearing: 2380	True bearing:

An airplane is flying at a bearing of 245° at 550 mph. Give the velocity of the airplane as a vector in component form.

$V = \langle 550 \cos 205^{\circ}, 550 \sin 205^{\circ} \rangle$ $V = \langle -498.47, -2.32.44 \rangle$

A man pushes a lawnmower with a force of 25 pounds uphill at an angle of 40°. Give the force exerted on the lawnmower as a vector in component form.

RESULTANT FORCE Applications	7. Two tugboats are pushing a barge. If Tugboat A is traveling in the direction of S 80° E, Tugboat B is traveling in the direction of N 65° E, and both boats are pushing with a force of 400 pounds, find the magnitude and direction (as a quadrant bearing) of the resultant force on the barge. $V_{1} = \langle 400 \cos 350^{\circ}, 400 \sin 350^{\circ} \rangle$ $V_{2} = \langle 400 \cos 25^{\circ}, 400 \sin 26^{\circ} \rangle$ $V_{1} + V_{2} = \langle 156.45, 99.59 \rangle$ $ V_{1} + V_{2} = \sqrt{156.45^{2} + 99.59^{2}} = 762.98 \text{ pounds}$ $\tan \theta = \frac{99.59}{156.45} ; \theta = 7.5^{\circ} \rightarrow N 82.5^{\circ} E$
If 2 or more forces are acting on an object, then the <u>resultant force</u> is the <u>sum</u> of the 2 vectors	 8. Two forces, with magnitudes of 85 pounds and 120 pounds, are acting on an object at angles of 35° and 140°, respectively, with the positive <i>x</i>-axis. Find the magnitude and direction (to the positive <i>x</i>-axis) of the resultant force.
RESULTANT VELOCITY Applications	10. An airplane is traveling at a speed of 500 miles per hour at a bearing of 325°. Once the airplane reaches a certain point, it encounters a wind velocity of 60 miles per hour in the direction of N 75° W. Find the resultant speed and direction (as a true bearing) of the airplane. $V_1 = \langle 500 \cos 125^\circ, 500 \sin 125^\circ \rangle$ $V_2 = \langle 60 \cos 165^\circ, 60 \sin 165^\circ \rangle$ $V_1 + V_2 = \langle -344.74, 425.11 \rangle$ $ V_1 + V_2 = \sqrt{(-344.74)^2 + 425.11^2} = 547.32 \text{ mph}$ $\tan \theta = -\frac{425.11}{344.74}$; $\theta = 320.96^\circ$
	11. A baseball player runs forward at 15 feet per second and throws a baseball at a velocity of 80 feet per second at an angle of 20° with the horizontal. What is the resultant speed and direction of the throw?

Using Trig to Find Missing Components

HORIZONT AL & VERTICAL Components	 A vector can be resolved into a horizontal component and a vertical component. The horizontal and vertical components are also called rectangular components. Because the rectangular components form a right triangle, you can use trgionometric ratios to find their magnitudes. 	y Vertical Component Horizontal Component
	14. Danika is pulling a sled with a force of 400 new the string makes a 35° angle with the ground, the horizontal and vertical components. $\cos 35^\circ = x $ Sin 35° = $ y $ = 400 · $\cos 35^\circ$ $ y $ = 400 x = 327.66 $ y $ = 229 Horizontal = 327.66 pounds, Vertical	find the magnitudes of <u> y </u> 400 Sin 35° 43

Putting it all Together

For each vector, give its (a) component form, (b) magnitude, and (c) direction angle.

Give each vector as a linear combination in terms of unit vectors i and j.

7. c = <-1, -3> **8.** JK with J(-6, 1) and K(-2, -8)

Write the vector in component form given its magnitude and direction angle.

9.
$$||v|| = 14; \ \theta = 135^{\circ}$$

10. $||k|| = 3.5; \ \theta = 210^{\circ}$
9. _____
10. ____
Give the trigonometric form of each vector.

11. $\mathbf{p} = \langle 2\sqrt{6}, -2\sqrt{2} \rangle$	11
	12
12. $v = 5i + 12j$	13

13. \overline{XY} with X(1, 5) and Y(-1, -9)

14. Two construction workers are lifting a beam using ropes. Worker A pulls with a force of 500 newtons at an angle of 40° with the positive x-axis. Worker B is on the opposite side pulling with a force of 380 newtons at an angle of 115° with the positive x-axis. Find the (a) magnitude and (b) direction angle of the resultant force.

14. a) _	
b) _	
15 . a) _	
b) _	
16. a) _	
b) _	-

- 15. A boat is sailing at a bearing of 140° with a speed of 26 mph. It hits a current of 8 mph at a bearing of 195°. Find the resultant (a) magnitude and (b) direction (as a true bearing) of the boat.
- 16. Josh is swimming in a lake at a speed of 4 feet per second in the direction of N 24° W. Find the magnitude of the (a) horizontal component and (b) vertical component.