Name:	Date:		
Торіс:		Class:	
Main Ideas/Questions	n Ideas/Questions Notes/Examples		
COMPLEX ZEROS	Just as polynomial function can have real zeros (rational and/or irration it can also have complex zeros. Find all zeros of the polynomial function below. Simplify all irraitonal and complex solutions. 1. $f(x) = x^4 - 4x^2 - 12$ $f(x) = (x^2 - 6)(x^2 + 2)$ $x^2 = 6$ $x^2 = -2$ $x = \pm \sqrt{6}$ $x = \pm i\sqrt{2}$ 2. $f(x) = 4x^4 + 31x^2 - 8$ $f(x) = (4x^2 - 1)(x^2 + 8)$ $4x^2 = 1$ $x^2 = -8$ $x^2 = \frac{1}{4}$ $x = \pm \sqrt{-8}$ $x = \pm \sqrt{2}$ $x = \pm 2i\sqrt{5}$		
	$X = \{ \pm i\sqrt{2}, \pm \sqrt{6} \}$	$X = \{ \pm 2i\sqrt{2}, \pm \pm \}$	
	3. $f(x) = x^{4} - 16$ $f(x) = (x^{2} + 4)(x^{2} - 4)$ $x^{2} = -4$ $x = \pm \sqrt{-4}$ $x = \pm 2i$ $x = \pm 2i$	4. $f(x) = -2x^{3} - 16$ $f(x) = -2(x^{3} + 8)$ $f(x) = -2(x+2)(x^{2} - 2x + 4)$ $\chi = -2$ $x = 2 \pm \sqrt{(-2)^{2} - 4(1)x}$ $\chi = 2 \pm \sqrt{-12}$ z	
	$\begin{array}{c} \chi = \left\{ \frac{1}{2} 2i, \frac{1}{2} \right\} \\ \hline 5. \ f(x) = x^{3} - 2x^{2} + x - 2 \\ f(x) = \chi^{2}(x - 2) + I(x - 2) \\ f(x) = \frac{(\chi^{2} + I)(\chi - 2)}{\chi^{2} = -I} \\ \chi = \frac{1}{2} i \\ \chi = \frac{1}{2} i \end{array}$	$X = 2 \pm 2i\sqrt{3}$ $X = \{2 - 2, 1 \pm i\sqrt{3}\}$ 6. $f(x) = 3x^3 - 4x^2 + 36x - 48$ $f(x) = x^2(3x - 4) + 12(3x - 4)$ $f(x) = (x^2 + 12)(3x - 4)$ $X^2 = -12$ $X = 4$ $X = 4/3$ $X = 4/3$ $X = 4/3$ $X = 4/3$	
	$\chi = \{ \pm i, 2 \}$	X={±2i√3, 43}	

[©] Gina Wilson (All Things Algebra®, LLC), 2017

Name:	Date:
Торіс:	Class:

Main Ideas/Questions	Notes/Examples		
	Just as a polynomial function can have real zeros (rational and/or irrational), it can also have complex zeros . Find all zeros of the polynomial functions below. Simplify all irrational and complex solutions.		
	1. $f(x) = x^4 - 4x^2 - 12$	2. $f(x) = 4x^4 + 31x^2 - 8$	
	3. $f(x) = x^4 - 16$	4. $f(x) = -2x^3 - 16$	
	5. $f(x) = x^3 - 2x^2 + x - 2$	6. $f(x) = 3x^3 - 4x^2 + 36x - 48$	

-

$$\begin{array}{c}
4. f(x) = x^{4} - 81 \\
f(x) = \frac{(x^{2} + 9)}{x^{2} = -9} \\
x^{2} = 3i \\
x^{2} \pm 3i \\
x^{2} \pm 3i
\end{array}$$

$$\begin{array}{c}
x = \frac{5}{2} \pm 3i, \pm 3 \\
x^{2} \pm 3i
\end{array}$$

$$\begin{array}{c}
f(x) = (x^{2} - 5x^{2} + 16x - 80) \\
f(x) = x^{2}(x - 5) + 16x(x - 5) \\
f(x) = x^{2}(x - 5) + 16x(x - 5) \\
f(x) = (x^{2} + 16x)(x - 5) \\
x^{2} = -16 \\
x^{2} \pm 4ii
\end{array}$$

$$\begin{array}{c}
x = \frac{5}{2} \pm 4ii, 5 \\
x^{2} \pm 4ii
\end{aligned}$$

$$\begin{array}{c}
x = \frac{5}{2} \pm 4ii, 5 \\
x^{2} \pm 4ii
\end{aligned}$$

$$\begin{array}{c}
x = \frac{5}{2} \pm 4ii, 5 \\
x^{2} \pm 4ii
\end{aligned}$$

$$\begin{array}{c}
x = \frac{5}{2} \pm 4ii, 5 \\
x^{2} \pm 4ii
\end{aligned}$$

$$\begin{array}{c}
x = \frac{5}{2} \pm 4ii, 5 \\
x^{2} \pm 4ii
\end{aligned}$$

$$\begin{array}{c}
x = \frac{5}{2} \pm 4ii, 5 \\
x^{2} \pm 4ii
\end{aligned}$$

$$\begin{array}{c}
x = \frac{5}{2} \pm 4ii, 5 \\
x^{2} \pm 4ii
\end{aligned}$$

$$\begin{array}{c}
x = \frac{5}{2} \pm 4ii, 5 \\
x^{2} \pm 4ii
\end{aligned}$$

$$\begin{array}{c}
x = \frac{5}{2} \pm 4ii, 5 \\
x^{2} \pm 4ii
\end{aligned}$$

$$\begin{array}{c}
x = \frac{5}{2} \pm 4ii, 5 \\
x^{2} \pm 4ii
\end{aligned}$$

$$\begin{array}{c}
x = \frac{5}{2} \pm 4ii, 5 \\
x^{2} \pm 4ii, 5 \\
x^{2$$

Main Ideas/Questions	Notes/Examples		
	Directions: Write an equation that could represent the function with the given		
	1. 1, 2, 5	2 . –7, – 1, 3	
USING ZEROS	(X-I)(X-2)(X-5)	(X+7)(X+1)(X-3)	
to V/rite Dolunomial	$(x-1)(x^2-7x+10)$	(x+1)(x ² -2x-3)	
Functions	X ³ -7X ² +10X-X ² +7X-10	X ³ -2X ² -3X+7X ² -14X -21	
	$f(x) = x^3 - 8x^2 + 11x - 10$	$f(x) = x^3 + 5x^2 - 17x - 21$	
	3. $-2, -\frac{4}{2}, 2$	4 . ±√2, 1	
		$(x + \sqrt{2})(x - \sqrt{2})(x - 1)$	
	$(3x+4)(x^2-4)$	$(X^{2}-2)(X-1)$	
	$f(x) = 3x^3 + 4x^2 - 12x - 16$	$f(x) = x^3 - x^2 - 2x + 2$	
	5 . ±2√3, ±1	6 . −6, 2±√5	
	(X+2J3)(X-2J3)(X+1)(X-1)	(X+6) (X - (2+J5))(X-(2-J5))	
	$(X^2 - 12)(X^2 - 1)$	(X+6)[X ² -X/2-V5)-X(2+V5)+ (2+V5)(2-V5)]	
	$f(x) = x^4 - 13x^2 + 12$	(X+6) [x²- 2x+x√5-2x-x√5+4-5] (x+6)(x²-4×-1)	
		$f(x) = x^3 + 2x^2 - 25x - 6$	
	7. 3 (mult. 2), 5	8. 0, 1, ⁵ / ₂ (mult. 2)	
	(X-3)(X-3)(X-5)	x(x-1)(2x-5)(2x-5)	
Examples with	$(X-3)(X^2-8X+15)$	$(y^2 - y)(4y^2 - 20y + 25)$	
	X ³ -8X ² +15X -3X ² +24X -45	(A A)(1A 20A 125)	
		4x1-20x3+20x4x3+20x-20x	
	$f(x) = x^3 - 11x^2 + 39x - 45$	$f(x) = 4x^4 - 24x^3 + 45x^2 - 25x$	
		-	

[©] Gina Wilson (All Things Algebra®, LLC), 2017

Write an equation that could represent a function with the following zeros.

1 . 1, 2, 5	2. -7, -1, 3
3. $-2, -\frac{4}{2}, 2$	4. ±√2, 1
3	

Name:		Pre-Calculus
Date:	Per:	Unit 3: Power, Polynomial, and Rational Functions

Quiz 3-3: Rational, Irrational, and Complex Zeros

Use the Rational Zero Theorem to list all possible rational zeros.

1. $f(x) = x^3 + 11x^2 - 15x - 27$

Possible Rational Zeros: $\pm 1, \pm 3, \pm 9, \pm 27$ **2.** $f(x) = 3x^4 - x^3 - 63x^2 - 39x + 20$

Possible Rational Zeros: ±1, ±2, ±4, ±5, ±10, ±20, ±3, ±3/3, ±4/3, ±5/3, ±10/3, ±20/2

Give the possible number of positive and negative real zeros using Descartes' Rule.

3. $f(x) = 2x^4 - x^3 - 2x^2 + x$ $f(-x) = 2x^4 + x^3 - 2x^2 - x$

4. $f(x) = 9x^5 - 3x^4 + 10x^3 - x^2 + 27x - 9$ $f(-x) = -9x^5 - 3x^4 - 10x^3 - x^2 - 27x - 9$

Find all zeros. Use the Rational Zero Theorem and synthetic substitution when necessary. Then, give the complete factorization of the function.

5.
$$f(x) = x^{3} - 19x + 30$$

POSSIBLE: $\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30$
 $-5 \begin{bmatrix} 1 & 0 & -19 & 30 & f(x) = (x+5)(x^{2}-5x+6) \\ \hline y -5 & 25 & -30 & f(x) = (x+5)(x-3)(x-2) \\ \hline 1 & -5 & 6 & 0 \end{bmatrix}$
Complete Factorization
 $f(x) = 9x^{3} + 63x^{2} - 16x - 112$
 $F(x) = 9x^{2} + 63x^{2} - 16x - 112$
 $F(x) = 9x^{2} + 63x^{2} - 16x - 112$
 $F(x) = 9x^{2} + 63x^{2} - 16x - 112$
 $F(x) = 9x^{2} + 63x^{2} - 16x - 112$
 $F(x) = 9x^{2} + 63x^{2} - 16x - 112$
 $F(x) = 9x^{2} + 63x^{2} - 16x - 112$
 $F(x) = (9x^{2} - 16)(x+7)$
 $g(x^{2} = 16)(x+7)$
 $x = \pm \frac{4}{3}$
Complete Factorization
 $f(x) = (3x+4)(3x-4)(x+7)$
 $f(x) = (3x+4)(3x-4)(x+7)$

7.
$$f(x) = 2x^{4} - 9x^{3} - 20x^{2} + 12x$$
$$f(x) = x(2x^{3} - 9x^{2} - 20x + 12)$$
$$f(x) = x(x+2)(2x^{2} - 13x + 6)$$
$$f(x) = x(x+2)(2x - 1)(x - 6)$$

8.
$$f(x) = x^{4} + 2x^{3} - 2x^{2} - 6x - 3$$

 $f(x) = (x+1)(x^{3} + x^{2} - 3x - 3)$
 $f(x) = \frac{(x+1)(x^{2} - 3)(x+1)}{x^{2} - 1}$
 $x^{2} = 3$
 $x^{2} = -1$
 $x^{2} = \frac{1}{\sqrt{3}}$

9.
$$f(x) = 5x^{3} + 2x^{2} - 90x - 36$$

 $f(x) = \chi^{2}(5\chi + 2) - 18(5\chi + 2)$
 $f(\chi) = (\chi^{2} - 18)(5\chi + 2)$
 $\chi^{2} = 18 - 5\chi = -2$
 $\chi^{2} = \sqrt{18} - 2$
 $\chi = -\frac{2}{5}$
 $\chi = 3\sqrt{2}$

 $f(x) = \frac{(\chi^2 - 5)(\chi^2 + 4)}{\chi^2 = 5}$ $\chi^2 = 5$ $\chi^2 = -4$ $\chi = \pm \sqrt{5}$ $\chi = \pm 2i$

10. $f(x) = x^4 - x^2 - 20$

$$\begin{array}{c} \text{Zeros:} \\ X = \left\{ -\frac{2}{5}, \pm 3\sqrt{2} \right\} \\ \hline f(X) = (5X + 2)(X + 3\sqrt{2})(X - 3\sqrt{2}) \end{array}$$

Complete Factorization

$$f(x) = (X + \sqrt{5})(X - \sqrt{5})(X + 2i)(X - 2i)$$

© Gina Wilson (All Things Algebra®, LLC), 2017

11.
$$f(x) = x^{3} - 5x^{2} - 7x + 51$$

Possible: $\pm 1, \pm 3, \pm 17, \pm 51$
 $f(x) = (x+3)(x^{2} - 8x + 17)$
 $x = 3 \pm \sqrt{(-3)^{2} - 4(1)(1)}$
 $x = 8 \pm \sqrt{(-3)^{2} - 4(1)(1)}$
 $x = 8 \pm \sqrt{(-4)^{2} - 4(1)(1)}$
Complete Factorization
 $f(x) = (x+3)(x-(4+i))(x-(4-i))$

Write a polynomial function in standard form given the zeros. Write your answers in the box below. -2

14.
$$\pm 4\sqrt{2}$$
, 3*i*
 $(\chi + 4\sqrt{2})(\chi - 4\sqrt{2})(\chi + 3i)(\chi - 3i)$
 $(\chi^2 - 32)(\chi^2 + 9)$
 $f(\chi) = \chi^4 - 23\chi^2 - 288$
15. $-\frac{1}{2}, -5 + i$
 $(2\chi + 1)(\chi - (-5 + i))(\chi - (-5 - i))$
 $(2\chi + 1)(\chi^2 - \chi (-5 - i) - \chi (-5 + i) + (-5 + i)(-5 - i))$
 $(2\chi + 1)(\chi^2 + 6\chi + \chi i + 5\chi - \chi i + 2k)$
 $(2\chi + 1)(\chi^2 + 6\chi + \chi i + 5\chi - \chi i + 2k)$
 $(2\chi + 1)(\chi^2 + 10\chi + 2k)$
 $2\chi^3 + 20\chi^2 + 52\chi + \chi^2 + 10\chi + 2k$
 $12. \frac{f(\chi) = \chi^4 - 2\chi^3 - 23\chi^2 + 24\chi + 144}{14}$
 $13. \frac{f(\chi) = 9\chi^5 - 58\chi^3 + 24\chi}{15. \frac{f(\chi) = 2\chi^3 + 21\chi^2 + k2\chi + 2k}{15. \frac{f(\chi) = \chi^3 + 2k}{15. \frac{f(\chi) = \chi^3$

GFAPHINI FATIONAL EGRAATIONS AND Identifying Asymptotes homework

Directions: Graph each function and identify its key characteristics.

_	_	-	_	
т	2	ζ	2	•
	v	v	L	•

Class:

y= x-5	
3. $f(x) = \frac{6x^2 + 4x - 11}{3x + 2}$	4. $f(x) = \frac{x^3 + 3x^2}{x^2 + 2x - 3}$

Polynomial and Rational Inggralities

POLYNOMiaL iNequality	 Given a polynomial function f(x), a polynomial inequality has the general form f(x) > 0, f(x) ≥ 0, f(x) ≠ 0, f(x) < 0, or f(x) ≤ 0. The inequality f(x) > 0 is true when The inequality f(x) < 0 is true when 		
	Look at the function $f(x) = x^4 + 3x^3 - x^2 - 3x$ graphed below.		
LOOkiN9 at a graph	a) Name all intervals for which $f(x) > 0$. b) Name all intervals for which $f(x) < 0$.		
	• Move all terms to one side of the inequality so 0 is on the other side.		
Steps to Solve a	Ompletely factor the polynomial and find the zeros.		
POLYNOMIOL	8 Plot the zeros on a number line.		
iNeouality	Choose test points in each interval. Substitute the test points into the function to determine whether the interval is positive or negative.		
	 Write the solution using interval notation. Use parentheses or brackets where necessary. 		
Directions: Solve each ine	equality. Use the number line provided to test intervals.		
1. $x^2 + 5x - 6 > 0$	$2. \ 2x^2 - x - 15 < 0$		

Name:			Date:	
Topic:			Class:	
Main Ideas/Questions	Notes/Examples			
POLYNOMICIL iNEQUALITY• Given a polynomial function $f(x)$, a polynomial inequality the general form $f(x) > 0$, $f(x) \ge 0$, $f(x) \ne 0$, $f(x) < 0$, the inequality $f(x) > 0$ is true when $f(x)$ is positive.• The inequality $f(x) < 0$ is true when $f(x)$ is negative.• The inequality $f(x) < 0$ is true when $f(x)$ is negative.			t), a polynomial inequality has $x = 0, f(x) \neq 0, f(x) < 0, \text{ or } f(x) \le 0.$ then $f(x)$ is positive then $f(x)$ is negative.	
	Look at the funct	$\operatorname{ion} f(x) = x$	$x^4 + 3x^3 - x^2 - 3x$ graphed below.	
LOOKING at	a) Name all intervals for $(-\infty, -3)$, $(-1, 0)$	which $f(x) >$	> 0.)	
	b) Name all intervals for (-3, -1), (0, 1	b) Name all intervals for which $f(x) < 0$. (-3, -1), (0, 1)		
	Move all terms to on	e side of the	e inequality so 0 is on the other side.	
Steps to Solve a	Completely factor the sector of the secto	ne polynom	ial and find the zeros.	
POLYNOMICIL	In the series on a new series on a new series of a new seri	umber line.		
inequality	 Choose test points in each interval. Substitute the test points into the function to determine whether the interval is positive or negative. Write the solution using interval notation. Use parentheses or brackets where necessary. 			
Directions: Solve each ine	equality. Use the number li	ine provideo	d to test intervals.	
1. $x^{2} + 5x - 6 > 0$ (X+14)(X-1)?0 Zevos: X=-6,1		2. $2x^2 - x - 15 < 0$ (2x+5)(x-3) < 0 Zeros: $X = -\frac{5}{2},3$		
-7: (-7+6) (-7-1)>0		-3: (-6+5)(-3-3) <0		
870 V		640 X		
0: (0+w)(0-0 > 0		0.(0+5)(0-3)(0		
-6>0 X		-15∠0 √		
2: (2+4) 12-170		4: (4+5)(4-2)(A		
870 √		9<0 x		
-8 -6 -4 -2 0 2 4 6 8				
$(-\infty, -6) \cup (1, \infty)$			$(-\frac{5}{2}, 3)$	

.

Name:

Date:

Topic:		Class:		
- Main Ideas/Questions	Notes/Examples			
Rational inequality	 Given a rational function f(x), a rational inequality has the general form f(x) > 0, f(x) ≥ 0, f(x) ≠ 0, f(x) < 0, or f(x) ≤ 0. The inequality f(x) > 0 is true when The inequality f(x) < 0 is true when 			
	Look at the function $f(x) = \frac{2x^2 - 6x - 8}{x^2 + x - 6}$ graphed below.			
LOOkiN9 at a 9raph	 a) Name all intervals for w b) Name all intervals for w 	which $f(x) > 0$.		
	Notice that a rational function switches signs at both			
		ros and its vertical asympto	tes!	
	 Find the zeros of both the numerator and the denominator by factoring 			
steps to solve a	Plat these points on a number line (A work has the advance in the)			
Rational inequality	Choose test points in function to determine	ach interval. Substitute the test points into the whether the interval is positive or negative.		
	 Write the solution using interval notation. Use parentheses or brackets where necessary. 			
Directions: Solve each ine	equality. Use the number lin	ne provided to test intervals.		
1. $\frac{x+5}{x+2} > 0$		2. $\frac{x}{x^2-5x-6} < 0$		
-8 -	6 -4 -2 0 2 4 6 8	-8 -6	-4 -2 0 2 4 6 8	

Name:			Date:
Торіс:		Class:	
Main Ideas/Questions	Notes/Examples		
Rational inequality	 Given a rational function f(x), a rational inequality has the general form f(x) > 0, f(x) ≥ 0, f(x) ≠ 0, f(x) < 0, or f(x) ≤ 0. The inequality f(x) > 0 is true when f(x) is positive. The inequality f(x) < 0 is true when f(x) is negative. 		
	Look at the function	on $f(x)$	$=\frac{2x^2-6x-8}{x^2+x-6}$ graphed below.
LOOkiN9 at	a) Name all intervals for which $f(x) > 0$. $(-\infty, -3), (-1, 2), (4, \infty)$		
	(-3,-1), $(2, 4)$		
	Notice that a rational function switches signs at both its zeros and its vertical asymptotes!		
	Move all terms to one side	de of the	e inequality so 0 is on the other side.
Steps to Solve a	Find the zeros of both the	e nume	rator and the denominator by factoring.
Rational	Plot these points on a number of the points on a number of the points in equilation of the points	mber lir	ne. (Asymptotes ALWAYS get an open circle!)
iNeqUality	 Choose less points in ederninerval. Sobshible the less points into the function to determine whether the interval is positive or negative. Write the solution using interval notation. Use parentheses or brackets where necessary. 		
Directions: Solve each inequality. Use the number line provided to test intervals.			d to test intervals.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-6 ZCVO: X=0 Asym: (X-6)(X+1) -40; -420 × X=6, X=-1	
$-3:\frac{2}{-1}>0; -2>0$	- x	0.5:	···5 3.25 <0 ; = 20 X
0: 壹 70 ✓	-	1: <u>-10</u> 1: <u>-</u> 8	20 X
(-10,-5	$5) \cup (-Z_1 \infty)$	•	$(-\infty, -1) \cup (0, 6)$

Given a quadratic equation of the form $ax^2 + bx + c = 0$, you can determine the number and type of roots (solutions) by finding the discriminant of the equation.					
Discriminant Formula	Value of <i>d</i>		# of Roots	Type of Roots	
	d > 0 (a perfect square)d > 0 (NOT a perfect square)		2	real + rational	
b ² -Hac			2	real + irvational	
	<i>d</i> = 0		١	rational	
	<i>d</i> < 0		2	complex/ imaginary	
Find the discriminant of each equation, then determine the number and type of roots.					
9. $x^2 + 12x - 27 = 0$	10. 9x ² + 3		0x+25=0		
$(12)^2 - 4(1)(-27)$		$(30)^2 - 4(9)(25)$			
144 + 108 = 252		900 - 900 = 0			
2 irrational	I rational root				
11. $2x^2 + 11 = 1 \rightarrow 2x^2 + 10 = 0$		12. $5x^2 + 5$	$=x^2-12x$ -7	4x2 +12x +5=0	
$(0)^{2} - 4(2)(10)$ 0 - 80 = -80		$(12)^2 - 4(4)(5)$ 144 - 80 = 64			
2 imaginary roots		200	ational	roots	

Topic #2: Discriminant of a Quadratic Equation

Topic #3: Solving Quadratic Equations

Methods for Solving Quadratic Equations: Factoring, Square Roots, Completing the Square, The Quadratic Formula					
Solve using the most appropriate method. Simplify all irrational and complex solutions.					
13. $x^2 - 9x - 43 = 27 \rightarrow \chi^2 - 9\chi - 70 = 0$	14. x^2 -8x+33=5 → χ^2 -8 × + 28 =0				
(x-14)(x+5)=0	$X = \frac{8 \pm \sqrt{(-8)^2 - 4(1)(28)}}{2(1)}$				
X-14=0 X+S=0	- 8 + 1/04-112				
X=14 X=-5	2				
X= {-5, 14}	$= \frac{8 \pm \sqrt{-48}}{2}$ = $8 \pm 4i\sqrt{3}$ = $4 \pm 2i\sqrt{3}$				