Name:

Date:

Topic:

Class:

\square Date:

Topic:

Class:

	$\text { 7. } \left.\begin{aligned} f(x) & =2 x^{5}-5 x^{4}-2 x+5 \\ f(x) & =x^{4}(2 x-5)-1(2 x-5) \\ f(x) & =\left(x^{4}-1\right)(2 x-5) \\ f(x) & =\left(x^{2}+1\right)\left(x^{2}-1\right)(2 x-5) \\ \hline x^{2}=-1 & x^{2}=1 \\ x= \pm \sqrt{-1} & 2 x= \pm \\ & x= \pm i \end{aligned} \right\rvert\, \begin{aligned} & x=\frac{5}{2} \\ & \end{aligned}$	$\text { 8. } \begin{aligned} f(x) & =x^{4}+7 x^{3}-x-7 \\ f(x) & =x^{3}(x+7)-1(x+7) \\ f(x) & =\left(x^{3}-1\right)(x+7) \\ f(x) & \left.=\frac{(x-1)\left(x^{2}+x+1\right)(x+7)}{x=1} \begin{array}{l} x=\frac{-1 \pm \sqrt{12-4(10 x)}}{2(1)} \\ x=\frac{-1 \pm \sqrt{-3}}{2} \\ x=\frac{-1 \pm i \sqrt{3}}{2} \end{array} \right\rvert\, x=-7 \\ x & =\left\{-7,1, \frac{-1 \pm i \sqrt{3}}{2}\right\} \end{aligned}$
Using the Rational Zero Theorem	9. $f(x)=2 x^{3}-5 x^{2}+8 x-20$ Possible: $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20, \pm \frac{1}{2}, \pm \frac{5}{2}$ $\begin{gathered} \frac{5}{2} \begin{array}{ccccc} 2 & -5 & 8 & -20 & f(x)=(2 x-5)\left(2 x^{2}+8\right) \\ \downarrow & 5 & 0 & 20 & f(x)=\frac{2(2 x-5)}{}\left(x^{2}+4\right) \\ 2 & 0 & 8 & 0 & 2 x=5 \\ x=\frac{5}{2} & x= \pm 2 i \\ x^{2}=-4 \\ x= \pm 2 i \end{array} \\ x=\left\{\frac{5}{2}, \pm 2 i\right\} \end{gathered}$	
	10. $f(x)=x^{3}-2 x^{2}+16 x+48$ Possible: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 16, \pm 24, \pm 48$	

$$
\begin{aligned}
\text { 4. } \begin{array}{rl}
f(x) & =x^{4}-81 \\
f(x) & =\frac{\left(x^{2}+9\right)}{}\left(x^{2}-9\right) \\
\hline x^{2}=-9 & x^{2}=9 \\
x= \pm 3 i & x= \pm 3
\end{array} \\
x=\{ \pm 3 i, \pm 3\}
\end{aligned}
$$

$$
f(x)=(x+3 i)(x-3 i)(x+3)(x-3)
$$

5.

$$
\begin{aligned}
& f(x)=x^{3}-5 x^{2}+16 x-80 \\
& f(x)=x^{2}(x-5)+16(x-5) \\
& f(x)=\frac{\left(x^{2}+16\right)(x-5)}{} \begin{array}{l}
x^{2}=-16 \\
\\
x= \pm 4 i \\
\\
x=\{ \pm 4 i, 5\} \quad f(x)=(x+4 i)(x-4 i)(x-5)
\end{array}
\end{aligned}
$$

6. $f(x)=x^{3}+6 x^{2}-14 x+16$

Possible: $\pm 1, \pm 2, \pm 4, \pm 8, \pm 16$

$$
\begin{aligned}
& -8 \left\lvert\, \begin{array}{cccc}
1 & 6 & -14 & 16 \\
\downarrow & -8 & 16 & -16 \\
1 & -2 & 2 & 0
\end{array}\right. \\
& x=\{1 \pm i,-8\} \\
& f(x)=\begin{array}{l|l}
(x+8) & \left(x^{2}-2 x+2\right) \\
x=-8 & \begin{array}{l}
\frac{2 \pm \sqrt{(-2)^{2}-4(1)(2)}}{2(1)} \\
x=\frac{2 \pm \sqrt{-4}}{2}
\end{array}
\end{array} \\
& f(x)=(x-(1+i))(x-(1-i))(x+8) \\
& x=\frac{2 \pm 2 i}{2} \\
& \text { 7. } f(x)=x^{3}-11 x+20 \\
& \text { Possible: } \pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20 \\
& -4 \left\lvert\, \begin{array}{cccc}
1 & 0 & -11 & 20 \\
\downarrow & -4 & 16 & -20 \\
1 & -4 & 5 & 0
\end{array}\right. \\
& x=\{2 \pm i,-4\} \\
& f(x)=\frac{(x+4)\left(x^{2}-4 x+5\right)}{x=-4} \begin{array}{l}
\frac{x=\frac{4 \pm \sqrt{(-4)^{2}-4(1)(5)}}{2(1)}}{x=\frac{4 \pm \sqrt{-4}}{2}}
\end{array} \\
& f(x)=(x-(2+i))(x-(2-i))(x+4) \\
& x=\frac{4 \pm 2 i}{2}
\end{aligned}
$$

Write an equation that could represent a function with the following zeros.

1. $1,2,5$	2. $-7,-1,3$
3. $-2,-\frac{4}{3}, 2$	$4 . \pm \sqrt{2}, 1$

Name: \qquad Pre-Calculus
Date: \qquad Per: \qquad

Unit 3: Power, Polynomial, and Rational Functions

Quiz 3-3: Rational, Irrational, and Complex Zeros
Use the Rational Zero Theorem to list all possible rational zeros.

1. $f(x)=x^{3}+11 x^{2}-15 x-27$
2. $f(x)=3 x^{4}-x^{3}-63 x^{2}-39 x+20$

Possible Rational Zeros:
Possible Rational Zeros:

$$
\pm 1, \pm 3, \pm 9, \pm 27
$$

$$
\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20, \pm \frac{1}{3}
$$

Give the possible number of positive and negative real zeros using Descartes' Rule.
3. $f(x)=2 x^{4}-x^{3}-2 x^{2}+x$
4. $f(x)=9 x^{5}-3 x^{4}+10 x^{3}-x^{2}+27 x-9$

$$
f(-x)=2 x^{4}+x^{3}-2 x^{2}-x
$$

$$
f(-x)=-9 x^{5}-3 x^{4}-10 x^{3}-x^{2}-27 x-9
$$

Positive Real Zeros: 5,3, or 1
Negative Real Zeros: 0

Find all zeros. Use the Rational Zero Theorem and synthetic substitution when necessary. Then, give the complete factorization of the function.
5. $f(x)=x^{3}-19 x+30$

Possible: $\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30$

$-5 |$| 1 | 0 | -19 | 30 |
| :---: | :---: | :---: | :---: |
| \downarrow | -5 | 25 | -30 |
| 1 | -5 | 6 | 0 |

$$
\begin{aligned}
& f(x)=(x+5)\left(x^{2}-5 x+6\right) \\
& f(x)=(x+5)(x-3)(x-2)
\end{aligned}
$$

Zeros:

$$
x=\{-5,2,3\}
$$

Complete Factorization

$$
f(x)=(x+5)(x-3)(x-2)
$$

6.

$$
\begin{aligned}
& f(x)=9 x^{3}+63 x^{2}-16 x-112 \\
& f(x)=9 x^{2}(x+7)-16(x+7) \\
& f(x)=\begin{array}{c|c}
\left(9 x^{2}-16\right) & (x+7) \\
\hline 9 x^{2}=16 & x=-7 \\
x^{2}=\frac{16}{9} & \\
x= \pm \frac{4}{3}
\end{array}
\end{aligned}
$$

Zeros:

$$
x=\left\{-7, \pm \frac{4}{3}\right\}
$$

Complete Factorization

$$
f(x)=(3 x+4)(3 x-4)(x+7)
$$

$$
\text { 7. } \begin{aligned}
& f(x)=2 x^{4}-9 x^{3}-20 x^{2}+12 x \\
& f(x)=x\left(2 x^{3}-9 x^{2}-20 x+12\right) \\
& f(x)=x(x+2)\left(2 x^{2}-13 x+6\right) \\
& f(x)=x(x+2)(2 x-1)(x-6)
\end{aligned}
$$

8. $f(x)=x^{4}+2 x^{3}-2 x^{2}-6 x-3$

$$
\begin{aligned}
& f(x)=(x+1)\left(x^{3}+x^{2}-3 x-3\right) \\
& \left.f(x)=\frac{(x+1)\left(x^{2}-3\right)(x+1)}{x=-1} \begin{array}{l}
x^{2}=3 \\
x= \pm \sqrt{3}
\end{array} \right\rvert\, x=-1
\end{aligned}
$$

Possible: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$
$-2\left[\begin{array}{cccc}2 & -9 & -20 & 12 \\ \downarrow & -4 & 26 & -12 \\ 2 & -13 & 6 & 0\end{array}\right.$

Zeros: $x=\left\{-2,0, \frac{1}{2}, 6\right\}$

Complete Factorization

$$
f(x)=x(x+2)(2 x-1)(x-6)
$$

Possible: $\pm 1, \pm 3$

$$
\begin{array}{ccccc}
-1 & \begin{array}{ccccc}
1 & 2 & -2 & -6 & -3 \\
\downarrow & -1 & -1 & 3 & 3 \\
1 & 1 & -3 & -3 & 0
\end{array} \\
\hline
\end{array}
$$

Complete Factorization

$$
\begin{aligned}
& \text { complete actinitaton } \\
& f(x)=(x+1)(x+1)(x+\sqrt{3})(x-\sqrt{3})
\end{aligned}
$$

9.

$$
\begin{aligned}
f(x)= & 5 x^{3}+2 x^{2}-90 x-36 \\
f(x) & =x^{2}(5 x+2)-18(5 x+2) \\
f(x)= & =\frac{\left(x^{2}-18\right)(5 x+2)}{x^{2}=18} \\
& x^{2}=\sqrt{18} \\
& x=-3 \sqrt{2}
\end{aligned}
$$

10.

$$
\begin{aligned}
& f(x)=x^{4}-x^{2}-20 \\
& f(x)=\begin{array}{l|l}
\left(x^{2}-5\right) & \left(x^{2}+4\right) \\
\hline x^{2}=5 & x^{2}=-4 \\
& x= \pm \sqrt{5} \\
x= \pm 2 i
\end{array}
\end{aligned}
$$

11. $f(x)=x^{3}-5 x^{2}-7 x+51$

Possible: $\pm 1, \pm 3, \pm 71, \pm 51$

Zeros:

$$
x=\{-3,4 \pm i
$$

Complete Factorization

$$
f(x)=(x+3)(x-(4+i))(x-(4-i))
$$

Write a polynomial function in standard form given the zeros. Write your answers in the box below.
12. -3 (mult. 2), 4 (mull. 2)
13. $\pm \sqrt{6}, \pm \frac{2}{3}, 0$

$$
\begin{aligned}
& (x+3)(x+3)(x-4)(x-4) \\
& \left(x^{2}+6 x+9\right)\left(x^{2}-8 x+16\right) \\
& x^{4}-8 x^{3}+16 x^{2}+6 x^{3}-48 x^{2}+96 x+9 x^{2}-72 x+144 \\
& f(x)=x^{4}-2 x^{3}-23 x^{2}+24 x+144
\end{aligned}
$$

$$
(x+\sqrt{6})(x-\sqrt{6})(3 x+2)(3 x-2)(x)
$$

$$
\left(x^{2}-6\right)\left(9 x^{2}-4\right)(x)
$$

$$
f(x)=9 x^{5}-58 x^{3}+24 x
$$

14. $\pm 4 \sqrt{2}, 3 i$

$$
\begin{aligned}
& (x+4 \sqrt{2})(x-4 \sqrt{2})(x+3 i)(x-3 i) \\
& \left(x^{2}-32\right)\left(x^{2}+9\right) \\
& f(x)=x^{4}-23 x^{2}-288
\end{aligned}
$$

15. $-\frac{1}{2},-5+i$

$$
\begin{aligned}
& (2 x+1)(x-(-5+i))(x-(-5-i)) \\
& (2 x+1)\left(x^{2}-x(-5-i)-x(-5+i)+(-5+i)(-5-i)\right) \\
& (2 x+1)\left(x^{2}+5 x+x i+5 x-x i+26\right) \\
& (2 x+1)\left(x^{2}+10 x+26\right) \\
& 2 x^{3}+20 x^{2}+52 x+x^{2}+10 x+26 \\
& f(x)=2 x^{3}+21 x^{2}+62 x+26
\end{aligned}
$$

12. $f(x)=x^{4}-2 x^{3}-23 x^{2}+24 x+144$
13. $f(x)=9 x^{5}-58 x^{3}+24 x$
14. $f(x)=x^{4}-23 x^{2}-288$
15. $f(x)=2 x^{3}+21 x^{2}+62 x+26$

$$
\begin{aligned}
& f(x)=\frac{(x+3)\left(x^{2}-8 x+17\right)}{x=-3} \begin{array}{l}
\frac{x=8 \pm \sqrt{(-8)^{2}-4(1)(7)}}{2(1)} \\
x=\frac{8 \pm \sqrt{-4}}{2}
\end{array} \quad \begin{array}{lllll}
1 & -5 & -7 & 51 \\
\downarrow & -3 & 24 & -51 \\
1 & -8 & 17 & 0
\end{array} \\
& x=\frac{8 \pm 2 i}{2}
\end{aligned}
$$

RATIONAL Functions

EQUATIONFORM: $f(x)=\frac{p(x)}{q(x)}$
Write the function in factored form, simplify, then find the:
X -INTERCEPTS:
Find the zeros of
Y-INTERCEPT: $p(x)$

Find $f(0)$
VERTICAL ASYMPTOTES:
Find the zeros of $q(x)$
HORIZONTAL ASYMPTOTE:

- If degree of $p>$ degree of q : No horlz. asymptote
- If degree of $p<$ degree of $q: x$-axis; $y=0$
- If degree of $p=$ degree of $q: y=\frac{\text { lead coeff of } p(x)}{\text { lead clef of } q(x)}$.

SLANT ASYMPTOTES:
$y=m x+b$; the quotient of $\frac{p(x)}{g(x)}$, ignoring the remainder
HOLES:
Common factors in $p(x)$ and $q(x)$

EXAMPLES
$f(x)=\frac{3 x+2}{x+2}$

D: $\{x \mid x \neq-2\}$
$\mathrm{R}:\{y \mid y \neq 1\}$.
$x-\operatorname{int}(s):(-2 / 3,0)$ y-int: $(0,1)$
va: $x=-2$ $\mathrm{HA}: \quad y=3$
SA: None None

2

D: $\{x \mid x \neq 1,3\}$ $x-\operatorname{int}(\mathrm{s}):$ None va: $\quad x=1$ sA: None

$$
\begin{aligned}
f(x) & =\frac{6 x-18}{x^{2}-4 x+3} \\
& =\frac{6(x-3)}{(x-1)(x-3)} \\
& =\frac{6}{x-1}
\end{aligned}
$$ R: $\mathrm{R}:\{y \mid y \neq 0,3\}$ y-int: $\quad(0,-6)$ HA: $y=0$ $(3,3)$

\qquad
\qquad Holes): \qquad

Directions: Graph each function and identify its key characteristics.

1. $f(x)=\frac{2 x+3}{x-3}$

Domain:
Range:
x-int(s):
y-int:
VA:
SA:
Holes:

2. $f(x)=\frac{10 x+20}{x^{2}+6 x+8}$

Domain:
Range:
x-int(s):
y-int:
VA:
SA:
Holes:

3. $f(x)=\frac{x^{2}-7 x+12}{x-2}$

Domain:
Range:
x-int(s):
y-int:
VA:
SA:
Holes:

Directions: Graph each function and identify its domain, range, intercepts, vertical and horizontal asymptotes, and holes.

1. $f(x)=\frac{2 x-3}{x+1}$

Domain:
Range:
x-int(s):
y-int:
VA:
HA:

Hole(s):
2. $f(x)=\frac{3 x+6}{x}$

Domain:
Range:
x-int(s):
y-int:
VA:
HA:
Hole(s):

3. $f(x)=\frac{x^{2}-4 x-12}{x+2}$

Domain:
Range:
x-int(s):
y-int:
VA:
HA:
Hole(s):

4. $f(x)=\frac{x^{2}+3 x}{x^{2}+5 x+6}$

Domain:
Range:
x-int(s):
y-int:
VA:
HA:
Hole(s):

Oblique (or Slant) ASYMPTOTES	When the \qquad of \qquad is \qquad \qquad the \qquad of \qquad the graph with have a slant, or oblique asymptote.			
The Equalion of the Oblique ASYMPTOTE	The equation of the oblique asymptote, $y=m x+b$, is the quotient of $\frac{p(x)}{q(x)}$, ignoring the remainder.			
	Steps to find the equation of the oblique asymptote:			
	(1)	Use long or synthetic division to divide $p(x)$ by $q(x)$.		
	$(2$	Write the equation of the oblique asymptote using the quotient, ignoring the remainder.		

Directions: Find the equation of the oblique asymptote.

1. $\begin{gathered} f(x)=\frac{x^{2}-x-14}{x+4} \\ -4 \left\lvert\, \begin{array}{ccc} 1 & -1 & -14 \\ \downarrow & -4 & 20 \\ \hline 1 & -5 & \\ y=x-5 \end{array}\right. \end{gathered}$	2. $f(x)=\frac{3 x^{2}-7 x}{x-3}$
3. $f(x)=\frac{6 x^{2}+4 x-11}{3 x+2}$	4. $f(x)=\frac{x^{3}+3 x^{2}}{x^{2}+2 x-3}$

【గゼロMalijices

Name:
Topic:

Date:

Class:

Main Ideas/Questions	Notes/Examples			
POLYNOMiAL iNeQUaLitY	- Given a polynomial function $f(x)$, a polynomial inequality has the general form $f(x)>0, f(x) \geq 0, f(x) \neq 0, f(x)<0$, or $f(x) \leq 0$. - The inequality $f(x)>0$ is true when $f(x)$ is positive - The inequality $f(x)<0$ is true when $f(x)$ is negative			
LOOkiNg dt a GRaibh	Look at the function $f(x)=x^{4}+3 x^{3}-x^{2}-3 x$ graphed below.			
	a) Name all intervals for which $f(x)>0$.$(-\infty,-3),(-1,0),(1, \infty)$			
		Name all intervals for which $f(x)<0$. $(-3,-1),(0,1)$		
Stepsto Solve a polyNomial iNeQUCLitY	(1) Move all terms to one side of the inequality so 0 is on the other side.			
	2 Completely factor the polynomial and find the zeros.			
	(3) Plot the zeros on a number line.			
	(4)	Choose test points in each interval. Substitute the test points into the function to determine whether the interval is positive or negative.		
	5	Write the solution using interval notation. Use parentheses or brackets where necessary.		

Directions: Solve each inequality. Use the number line provided to test intervals.

1. $x^{2}+5 x-6>0$ $(x+6)(x-1)>0$$\quad$ zeros: $x=-6,1$	2. 2. $2 x^{2}-x-15<0$ $(2 x+5)(x-3)<0$ zeros: $x=-\frac{5}{2}, 3$
$-7:(-7+6)(-7-1)>0$	-3: $(-6+5)(-3-3)<0$
$870 \checkmark$	$6<0 \times$
$0:(0+6)(0-1)>0$	$0:(0+5)(0-3)<0$
$-6>0 \quad x$	$-15<0 \quad \checkmark$
$2:(2+6)(2-1)>0$	4: $(4+5)(4-3)<0$
$870 \quad \checkmark$	$9<0 \quad x$
$(-\infty,-6) \cup(1, \infty)$	$\left(-\frac{5}{2}, 3\right)$

Name:

Date:

Topic:

Class:

Main Ideas/Questions	Notes/Examples			
RatiONal iNeQUALity	- Given a rational function $f(x)$, a rational inequality has the general form $f(x)>0, f(x) \geq 0, f(x) \neq 0, f(x)<0$, or $f(x) \leq 0$. - The inequality $f(x)>0$ is true when $f(X)$ is positive - The inequality $f(x)<0$ is true when $f(x)$ is negative			
	Look at the function $f(x)=\frac{2 x^{2}-6 x-8}{x^{2}+x-6}$ graphed below.			
LOOkiNO	a) Name all intervals for which $f(x)>0$.$(-\infty,-3),(-1,2),(4, \infty)$			
		ame all intervals for which $f(x)<0$. $(,-1),(2,4)$		
	Notice that a rational function switches signs at both its zeros and its vertical asymptotes!			
Stepsto Solve a RatiONal iNeQUality	(1) Move all terms to one side of the inequality so 0 is on the other side.			
	(2)	Find the zeros of both the numerator and the denominator by factoring.		
	3	Plot these points on a number line. (Asymptotes ALWAYS get an open circle!)		
	(4)	Choose test points in each interval. Substitute the test points into the function to determine whether the interval is positive or negative.		
	5	Write the solution using interval notation. Use parentheses or brackets where necessary.		

Directions: Solve each inequality. Use the number line provided to test intervals.

Topic *2: Discriminant of a Quadratic Equation

Topic *s: Solving Quadratic Equations

