
Thanksจivivinの Break
NOM MORT
Topic 1: Graphing Power, Polynomial, and Rational Functions

Given the graph of a polynomial functions below, determine the sign of the leading coefficient andwhether the function has an even or odd degree.

Topic 2: Dividing Polynomials

Topic 3: The Remainder Theorem
Use the Remainder Theorem to evaluate $f(x)$ at $x=c$.
16. $f(x)=x^{3}-4 x^{2}+x+6 ; c=5$

5. | 1 | -4 | 1 | 6 |
| ---: | ---: | ---: | ---: |
| 1 | 5 | 5 | 30 |
| 1 | 1 | 6 | 36 |
6. $f(x)=x^{4}-6 x^{3}-3 x^{2}+2 x+2 ; c=1$
$1 \left\lvert\, \begin{array}{ccccc}1 & -6 & -3 & 2 & 2 \\ \downarrow & 1 & -5 & -8 & -6 \\ 1 & -5 & -8 & -6 & -4\end{array}\right.$
7.

$$
\begin{align*}
& \text { 17. } f(x)=4 x^{4}-3 x^{3}+7 x-11 ; c=-2 \\
& -2 \left\lvert\, \begin{array}{ccccc}
4 & -3 & 0 & 7 & -11 \\
\downarrow & -8 & 22 & -44 & 74 \\
4 & -11 & 22 & -37 & 63
\end{array}\right. \tag{63}\\
& \text { 19. } f(x)=2 x^{4}+5 x^{3}+3 x+4 ; c=-3 \\
& -3 \left\lvert\, \begin{array}{ccccc}
2 & 5 & 0 & 3 & 4 \\
\downarrow & -6 & 3 & -9 & 18 \\
\hline 2 & -1 & 3 & -6 & 22
\end{array}\right.
\end{align*}
$$

Topic 4: The Factor Theorem

Topic 5: Rational Zero Theorem

Use the Rational Zero Theorem to list all possible rational zeros.	
22. $f(x)=x^{4}+12 x^{3}+7 x^{2}-42$	23. $f(x)=x^{3}-x^{2}-8 x^{2}+15$
$\pm 1, \pm 2, \pm 3, \pm 6, \pm 7, \pm 14, \pm 21, \pm 42$	$\pm 1, \pm 3, \pm 5, \pm 15$
24. $f(x)=3 x^{5}-11 x^{3}-15 x+24$	25. $f(x)=2 x^{3}+5 x^{2}-2 x+28$
$\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$,	$\pm 1, \pm 2, \pm 4, \pm 7, \pm 14, \pm 28$,
$\pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{8}{3}$	$\pm \frac{1}{2}, \pm \frac{7}{2}$

Topic 6: Descartes' Rule of Signs

Topic 7: Zeros of Polynomial Functions \& Complete Factorization
Find all zeros and give the complete factorization of the function. Use the Rational Zero Theorem and division when necessary. Simplify all irrational and complex solutions.

$$
\begin{aligned}
& \text { 30. } f(x)=x^{4}+14 x^{2}-72 \\
& \qquad \begin{array}{l|l}
f(x)= & \left(x^{2}-4\right)\left(x^{2}+18\right) \\
x= \pm 2 & \begin{array}{l}
x^{2}=-18 \\
x= \pm i \sqrt{18} \\
x= \pm 3 i \sqrt{2}
\end{array}
\end{array}
\end{aligned}
$$

zeros: $x=\{ \pm 2, \pm 3 i \sqrt{2}\}$

$$
f(x)=(x+2)(x-2)(x+3 i \sqrt{2})(x-3 i \sqrt{2})
$$

32. $f(x)=x^{3}-3 x^{2}-13 x+15 \quad \pm 1, \pm 3, \pm 5, \pm 15$

1 \begin{tabular}{cccc}

1	-3	-13
\downarrow	1	-2
\downarrow	-15	
1	-2	-15

\end{tabular}

$$
\begin{aligned}
& f(x)=(x-1)\left(x^{2}-2 x-15\right) \\
& f(x)=(x-1)(x-5)(x+3)
\end{aligned}
$$

zeros: $x=\{-3,1,5\}$

$$
\begin{aligned}
& \text { 31. } f(x)=5 x^{3}+12 x^{2}+x-6 \\
& -1 \left\lvert\, \begin{array}{cccc}
5 & 12 & 1 & -6 \\
\downarrow & -5 & -7 & 6 \\
5 & 7 & -6 & 0 \\
\downarrow 1 / 5, \pm 2 / 5, \pm 3 / 5 ; \\
& \\
f(x)=(x+1)\left(5 x^{2}+7 x-6\right) \\
f(x)=(x+1)(5 x-3)(x+2)
\end{array}\right.
\end{aligned}
$$

zeros: $x=\{-2,-1,3 / 5\}$
33. $f(x)=x^{3}+2 x^{2}-17 x-36 \quad \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 9$,

$-4 |$| 1 | 2 | -17 | -36 |
| :---: | :---: | :---: | :---: |
| \downarrow | -4 | 8 | 36 |
| 1 | -2 | -9 | 0 |

$$
f(x)=\frac{(x+4)\left(x^{2}-2 x-9\right)}{x=-4} \begin{aligned}
& \frac{x=2 \pm \sqrt{(-2)^{2}-4(1)(9)}}{2(1)} \\
& x=\frac{2 \pm \sqrt{40}}{2}
\end{aligned}
$$

$$
x=\frac{2 \pm 2 \sqrt{10}}{2}
$$

$$
x=1+\sqrt{10}
$$

$$
f(x)=(x+4)(x-(1+\sqrt{10}))(x-(1-\sqrt{10}))
$$

zeros: $x=\{-4,1 \pm \sqrt{10}\}$

Identify the zeros, their multiplicities, and describe the effect on the graph.
34. $f(x)=x^{3}(2 x-3)^{2}(x+7)^{5}$
35. $f(x)=x^{6}-2 x^{5}-4 x^{4}+8 x^{3}$

$$
\begin{aligned}
& x^{5}(x-2)-4 x^{3}(x-2) \\
& \left(x^{5}-4 x^{3}\right)(x-2) \\
& x^{3}\left(x^{2}-4\right)(x-2) \\
& x^{3}(x+2)(x-2)^{2}
\end{aligned}
$$

zero	Multiplicity	Effect
-7	5	intersects
0	3	intersects
$3 / 2$	2	tangent

zero	Multiplicity	Effect
-2	1	intersects
0	3	intersects
2	2	tangent

Topic 9: Writing Polynomial Functions Given Zeros
Use the given zeros to write a polynomial function.

$$
\begin{aligned}
& \text { 36. 0, }-1 \text { (multiplicity 2), } \frac{4}{3} \\
& x(x+1)^{2}(3 x-4) \\
& =\left(3 x^{2}-4 x\right)\left(x^{2}+2 x+1\right) \\
& =3 x^{4}+6 x^{3}+3 x^{2}-4 x^{3}-8 x^{2}-4 x \\
& f(x)=3 x^{4}+2 x^{3}-5 x^{2}-4 x
\end{aligned}
$$

$$
\begin{aligned}
& \text { 37. } \pm 5 \pm \pm 3 \sqrt{2} \\
& (x+5)(x-5)(x+3 \sqrt{2})(x-3 \sqrt{2}) \\
& =\left(x^{2}-25\right)\left(x^{2}-18\right) \\
& =x^{4}-18 x^{2}-25 x^{2}+450 \\
& f(x)=x^{4}-43 x^{2}+450
\end{aligned}
$$

38. $-3,-1-3 i$

$$
\begin{aligned}
& (x+3)(x-(-1-3 i))(x-(-1+3 i)) \\
& =(x+3)\left(x^{2}-x(-1+3 i)-x(-1-3 i)+(-1-3 i)(-1+3 i)\right) \\
& =(x+3)\left(x^{2}+x-3 i x+x+3 i x+10\right) \\
& =(x+3)\left(x^{2}+2 x+10\right) \\
& =x^{3}+2 x^{2}+10 x+3 x^{2}+6 x+30 \quad f(x)=x^{3}+5 x^{2}+16 x+30
\end{aligned}
$$

Topic io: Polynomial \& Rational Inequalities
Solve the inequality. Use the number line to test intervals.

VTOTH

E

C0WC

Application of Growth and Decay

The exponential growth or decay can be modeled by $P_{t}=P_{0} e^{r t}$

> where P_{0} is the initial value P_{t} is the value at time t
> r is a growth/decay rate
> $(r>0$ for growth and $r<0$ for decay $)$ t is the time

The common applications of exponential growth and decay are population (of a town or bacteria) or decay of radioactive substance.

Usually, you are provided with all the information except the one variable you are solving for.

The initial population of a bacteria in a culture is 300 . If the growth is exponential and the rate of growth is 23% for every hour, what will be the population after 6 hours?

The initial population is 300 so $P_{0}=300$
The rate of growth is 23% so $r=0.23$
The time is 6 hours so $t=6$ is defined hourly.

To find the population after 6 hours, substitute the values into $P_{t}=P_{0} e^{r t}$.

$$
P_{6}=300 e^{0.23 \cdot 6}=300 e^{1.38} \approx 1192
$$

So the population after 6 hours is 1192 .

The following pages are copies of your
notes/homework. They should be in the order they were given to you.

There are copies of ONLY the homework at the end as well.

$$
\begin{aligned}
& \text { Vొiot }
\end{aligned}
$$

$$
\begin{aligned}
& \text { \& Naれtulral Bases }
\end{aligned}
$$

Main Ideas／Questions	Notes／Examples	
EXPONENTIAL FUNCTION $f(x)=a b^{x}$ b is the base of the function	Graph $f(x)=2^{x}$	Graph $f(x)=\left(\frac{1}{2}\right)^{x}$
	个1	
	$\rightarrow+1+1$	
	，	
	，	
	\％	$\rightarrow-1+1+1-1$
	－1	
		$\rightarrow{ }_{-1}{ }_{-1}$
	H 1	
	When $a>1$ and $b>1$ ，the function is increasing and called an exponential growth．	When $a<1$ and $b<1$ ，the function decreasing and called an exponential decay．

Directions：Classify the function as an exponential growth or decay，graph，

1．$f(x)=3^{x}$

Growth

Increasing interval？$-\infty \rightarrow \infty$

2．$f(x)=\left(\frac{1}{3}\right)^{x}$
Decay
Decreasing interval？

3．$f(x)=\left(\frac{2}{5}\right)^{x}$
Decay
Decreasing interval？$-\infty \rightarrow \infty$

-- Vొొict qi -- Homework

Directions: Classify each function as an exponential growth or an exponential decay. Sketch the curve.

1. $f(x)=\frac{1}{7} \cdot 6^{x}$
2. $f(x)=\frac{3}{2} \cdot\left(\frac{1}{4}\right)^{x}$
3. $f(x)=3 \cdot\left(\frac{5}{2}\right)^{x}$

Directions: (a) Identify the parent function and (b) describe the transformations.
4. $f(x)=-\left(\frac{4}{3}\right)^{2(x-3)}+1$
5. $f(x)=7^{-\frac{3}{2} x}+3$
6. $f(x)=\frac{1}{3} \cdot e^{-x}-9$
7. $f(x)=5 \cdot\left(\frac{4}{5}\right)^{x+3}$

Directions: Graph each function, then identify its key characteristics.
8. $f(x)=\frac{1}{2} \cdot 5^{-x}-1$

Domain:
Range:
y-intercept:
Asymptote:
Increasing Interval:
Decreasing Interval:

End Behavior:

-- Vగొit

(population, \$\$\$, bacteria, etc.)

Main Ideas/Questions	GROWTM	DECAY
Exponential GROWTH \& DECAY	Exponential growth occurs when a quantity exponentially increases over time.	Exponential decay occurs when a quantity exponentially decreases over time.
	EXPONENTIAL GROWTH FUNCTION: $f(t)=a(1+r)^{t}$	EXPONENTAL DECAY FUNCTION: $f(t)=a(1-r)^{\dagger}$
$\begin{aligned} & \text { Q= initial amount } \\ & \overparen{Q}=\text { rate (decimal) } \\ & \mathfrak{C}=\text { length of time } \end{aligned}$	where \boldsymbol{a} is the initial amo	the growth or decay rate
	1. Brooke started her career with an annual salary of $\$ 32,000$. Each year thereafter, her salary increased by 2.5%. Write and use an exponential growthfunction to find her sal ary when she retires after 30 vears.$\begin{aligned} & f(t)=a(1+r)^{t} \quad f(30)=32,000(1.025)^{30} \\ & f(t)=32000(1+.025)^{\dagger} \end{aligned}$	
EXAMPLES: If calculated monthly, your " t " will be the \# of months.	2. In 1995, a magazine had 14,000 subscribers. The number of subscribers increased by 40% each year thereafter. Write and use an exponential growth function to find the number of subscribers in 2016.$\begin{array}{lr} \quad f(t)=a(1+r)^{\dagger} & f(21)=14,000(1.40)^{21} \\ f(t)=14,000(1+.40)^{\dagger} \\ t \text { is difference in years } & =16,398,978 \end{array}$	
If a half life is 3 days, then " t " value will be $t / 3$ (every 3 days, " t " will change)	3. Kate drank an energy beverage hour the amount of caffeine in hes Write and use an exponential de caffeine in her system after eight $\begin{gathered} f(t)=a(1-r)^{\dagger} \\ f(t)=150(1-.12)^{\dagger} \end{gathered}$	150 milligrams of caffeine. Each system decreases by about 12%. y function to find the amount of (8)
	4. The half-life of Mercury-197 is 3 das decay function to find the amou sample after 20 days. $\begin{aligned} & f(t)=a(1-r)^{t} \\ & f(t)=50(1-.5)^{t / 3} \end{aligned}$	Write and use an exponential of Mercury-197 left from a 50-gram $f(20)=50(0.5)^{20 / 3}$

-- Vొొi̊ \ddagger--

 Homework

Exponential Growth and Decay

1. Aaron owns a rare baseball card. He bought the card for $\$ 7.50$ in 1987 and its value increases by 6% each year. Write and use an exponential growth function to find the baseball card's value in 2015.
2. Jennifer started working at her job earning $\$ 6.25$ per hour. Every six months, she gets a 3.25% raise. If Jennifer has worked at the job for 14 years, what is her hourly rate?
3. In 2005, the Summerville Journal had 110,000 subscriptions. The number of subscriptions subsequently decreased by 8% each year. Write and use an exponential decay function to find the number of subscriptions in 2022.
4. In November, 26 students at Monarch High School had contracted the flu. Each month, the number of students who have contracted the flu increases by 36%. Write and use an exponential growth function to find the total number of students who have contracted the flu by May.
5. Ian bought a new truck for $\$ 35,000$ in 2015. Each year, the value of the truck depreciates by 9%. Write and use an exponential growth function to find the value of his truck at the end of his 60-month loan.
6. A certain compound has a half-life of four days. Write and use an exponential decay function to find the amount of compound remaining from a 75 -ounce sample after three weeks.

Continuous Growth and Decay

7. A 4 -foot tree was planted in 1984. The tree grows continuously by 22% each year from this point forward. Find the height of the tree after 8 years.
8. An ice sculpture measures 52 inches and melts continuously by 3% per minute. Find the height of a sculpture after 15 minutes.
9. In 2002, a certain town recorded 15,300 acres of undeveloped land. Each year after, the amount of land decreased by 7% due to residential and commercial development. Find the approximate amount of undeveloped land in 2013.

Logistic Growth

10. The population of fish in a pond from 2001 to 2014 is modeled by the function below, where t is the years since 2001. Using the function, find the number of fish in the pond in 2014.
$P(t)=\frac{1125}{1+12 e^{-0.17 t}}$
11. The bears in Alaska are limited to a certain area to live due to the resources available for food and shelter. After t years, the number of bears living in the area is modeled by the function below. Using the function, find the number of bears after 17 years.
$f(t)=\frac{103}{1+26 e^{-0.31 t}}$

 Gomppounhd lnterfesst
 \$ $\$ \$ \$ \$ \$ \$$

Main Ideas/Questions	Notes/Examples
COMPOUNQ iNteRESt	A common application of exponential growth is compound interest. Compound interest is interest paid on both the initial investment, called the principal, and on previously earned interest.
	FORMULA: $\quad$$\boldsymbol{A}=$ total balance $\boldsymbol{P}=\mathrm{P}\left(1+\frac{r}{n}\right)^{\mathrm{nt}}$ $\boldsymbol{r}=\frac{\text { rate }}{}$ $\boldsymbol{n}=\frac{\# \text { times compounded (yearly) }}{\text { timitial) amount }}$ $\boldsymbol{t}=$ time
examples	1. Dave invests $\$ 300$ in an account with a 5% interest rate. If he makes no other deposits or withdraw als, find his account balance after 15 years if the interest is compounded with the following frequencies.
	b) monthly $\begin{aligned} & A=300\left(1+\frac{.05}{12}\right)^{12(15)} \\ & A=300(1.00416)^{180} \\ & A=\$ 634.11 \end{aligned}$
	2. If $\$ 2,500$ is deposited into a savings account earning 8% annual interest, how much will be in the account at the end of 25 years if the interest is compounded with the following frequencies:
	a) quarterly $\quad(n=4)$ b) daily $\quad(n=365)$ $A=2500\left(1+\frac{.08}{4}\right)^{4(25)}$ $A=2500\left(1+\frac{.08}{365}\right)^{365(25)}$ $A=2500(1.02)^{100}$ $A=2500(1.000219)^{9125}$ $A={ }^{\$ 18111.62}$ $A={ }^{18468.58}$
	3. When Amelia turned 6 , her grandparents opened a college savings account for her with an initial deposit of $\$ 500$. The account earns 3.2% interest compounded bimonthly. If her grandparents make no other deposits or withdrawals, how much money will be in the account when Amelia can access it at age 18? $\quad(t=12, n=24) \quad n=(2) 12$ $\begin{array}{ll} A=500\left(1+\frac{.032}{24}\right)^{24(12)} & A=\$ 733.88 \\ A=500(1.001 \overline{3})^{288} & \end{array}$

 Gomboound lnterfest
 \$\$\$\$\$\$\$\$

Main Ideas/Questions	Notes/Examples	
COMPOUND iNteReSt	A common application of exponential growth is compound interest. Compound interest is interest paid on both the initial investment, called the principal, and on previously earned interest.	
	FORMULA: $A=p\left(1+\frac{r}{n}\right)^{n t}$	$\begin{aligned} & \boldsymbol{A}=\text { total balance } \\ & \boldsymbol{P}=\text { principal (initial) amount } \\ & \boldsymbol{r}=\text { rate } \\ & n=\text { \# times compounded (yearly) } \\ & \boldsymbol{t}=\text { time } \end{aligned}$
examples	1. Dave invests $\$ 300$ in an account with a 5% interest rate. If he makes no other deposits or withdrawals, find his account balance after 15 years if the interest is compounded with the following frequencies.	
	a) semiannually $\quad(n=2)$ b) monthly $\quad(n=12)$ $A=300\left(1+\frac{.05}{2}\right)^{2(15)}$ $A=300\left(1+\frac{05}{12}\right)^{12(15)}$ $A=300(1.025)^{30}$ $A=300(1.0041 \overline{6})^{180}$ $A=\$ 629.27$ $A={ }^{4} 634.11$	
	2. If $\$ 2,500$ is deposited into a savings account earning 8% annual interest, how much will be in the account at the end of 25 years if the interest is compounded with the following frequencies:	
	$\begin{aligned} & \text { a) quarterly } \quad(n=4) \\ & A=2500\left(1+\frac{.08}{4}\right)^{4(25)} \\ & A=2500(1.02)^{100} \\ & A=\# 18111.62 \end{aligned}$	$\begin{aligned} & \text { b) daily } \quad(n=365) \\ & A=2500\left(1+\frac{.08}{365}\right)^{365(25)} \\ & A=2500(1.000219)^{9125} \\ & A=8468.58 \end{aligned}$
	3. When Amelia furned 6 , her grandparents opened a college savings account for her with an initial deposit of $\$ 500$. The account earns 3.2% interest compounded bimonthly. If her grandparents make no other deposits or withdraw als, how much money will be in the account when Amelia can access it at age $18 ? \quad(t=12, n=24)$$\begin{array}{ll} A=500\left(1+\frac{.032}{24}\right)^{24(12)} & A=\$ 733.88 \\ A=500(1.001 \overline{3})^{288} & \end{array}$	

	4. Suppose a savings account offers a 0.4% interest rate compounded semiannually. If Samantha opens an account with $\$ 750$ and makes no other deposits or withdraw als, how much interest will she have earned after 10 years?
	5. In 1990, Carter deposited $\$ 1,000$ in an investment account that earns $2 \frac{3}{8} \%$ annual interest, compounded quarterly. If no other deposits or withdrawals were made, find the balance of his account in 2025.
CONtiNUOUS COMPOUND iNteReSt	In some cases, interest is compounded continuously meaning the account is constantly earning interest. The formula to the right can be used to find the balance of the account in this case. FORMULA: $A=P e^{r t}$
EXOMPLES	6. Suppose $\$ 800$ is invested in an account at a 6% interest rate compounded continuously. If no other withdrawals or deposits are made, find the balance in the account after 20 years. $\begin{aligned} & A=800 e^{.06(20)} \\ & A=800 e^{1.2} \end{aligned}$ $A=\$ 2656.09$
	7. Find the balance of an account after 5 years if $\$ 1,200$ is initially invested at an interest rate of 12.5% per year, compounded continuously and there are no other deposits or withdrawals.
Option A: 5.5\% annual interest compounded monthly	8. Carla is investing $\$ 1,500$ in a new 30 -year retirement account. Determine which of the interest rates and compounding periods shown to the left would be her best investment option.
Option B: 2.7\% annual interest compounded continuously	

	4. Suppose a savings account offers a 0.4% interest rate compounded semiannually. If Samantha opens an account with $\$ 750$ and makes no other deposits or withdrawals, how much interest will she have earned $\begin{array}{lr} \text { after } 10 \text { years? } \\ A=750\left(1+\frac{.004}{2}\right)^{10(2)} \\ A=750(1.002)^{20} \\ A=780.58 \end{array} \quad \begin{array}{r} \$ 30.58 \text { in } \\ \text { interest } \end{array}$ 5. In 1990, Carter deposited $\$ 1,000$ in an investment account that earns $2 \frac{3}{8} \%$ annual interest, compounded quarterly. If no other deposits or withdrawals were made, find the balance of his account in 2025. $\begin{array}{ll} A=1000\left(1+\frac{.02375}{4}\right)^{4(35)} \\ A=1000(1.0059375)^{140} & A=\$ 2290.55 \end{array}$
CONTINUOUS COMPOUND iNteReSt	In some cases, interest is compounded continuously meaning the account is constantly earning interest. The formula to the right can be used to find the balance of the account in this case. $A=P e^{r t}$
EXAMPLES	6. Suppose $\$ 800$ is invested in an account at a 6% interest rate compounded continuously. If no other withdrawals or deposits are made, find the balance in the account after 20 years. $\begin{array}{ll} A=800 e^{.06(20)} & \\ A=800 e^{1.2} & A=\$ 2656.09 \end{array}$
	7. Find the balance of an account after 5 years if $\$ 1,200$ is initially invested at an interest rate of 12.5% per year, compounded continuously and there are no other deposits or withdrawals. $\begin{array}{ll} A=1200 e^{.125(s)} \\ A=1200 e^{.625} & A=\$ 2241.90 \end{array}$
Option A: 5.5\% annual interest compounded monthly Option B: 2.7\% annual interest compounded continuously	8. Carla is investing $\$ 1,500$ in a new 30 -year retirement account. Determine which of the interest rates and compounding periods shown to the left would be her best investment option. $\begin{array}{ll} A=1500\left(1+\frac{.055}{12}\right)^{12(30)} & A=1500 e^{.027(30)} \\ A=7781.08 & A=3371.86 \\ & \text { Option A yields more money. } \end{array}$

| Compound Interest |
| :--- | :--- |
| 1. If $\$ 1,800$ is deposited into an account earning 6% interest, how much will be in the account at
 the end of 18 years if the interest is compounded with the following frequencies:
 a) quarterly
 |

2. Erica was given $\$ 300$ for her birthday and decided to put it in a savings account that earns 3.75% interest. If she makes no other deposits or withdrawals, find her account balance after ten years if the interest is compounded with the following frequencies.
a) semiannually
b) daily
3. A $\$ 2,750$ deposit was made to an account earning $2 \frac{3}{4} \%$ annual interest compounded weekly. If no other deposits or withdrawals are made, find the balance of the account after nine years.

Continuous Compound Interest

7. Moises was given a $\$ 1,500$ signing bonus at his new job. He is going to invest this money in an account that earns 6% interest, compounded continuously. Find the account balance after ten years.
8. Suppose $\$ 2,800$ is deposited into an account at a 2.5% interest rate, compounded continuously. If there are no other deposits or withdrawals, find the account balance after 25 years.
9. Find the balance of an account after seven years if $\$ 600$ is deposited and the interest rate is 11.25% per year, compounded continuously and no other deposits or withdrawals are made.

The following pages are copies of your homework in order

The last two pages: You may choose one of the mini-projects to complete.

-- Vొొict qi -- Homework

Directions: Classify each function as an exponential growth or an exponential decay. Sketch the curve.

1. $f(x)=\frac{1}{7} \cdot 6^{x}$
2. $f(x)=\frac{3}{2} \cdot\left(\frac{1}{4}\right)^{x}$
3. $f(x)=3 \cdot\left(\frac{5}{2}\right)^{x}$

Directions: (a) Identify the parent function and (b) describe the transformations.
4. $f(x)=-\left(\frac{4}{3}\right)^{2(x-3)}+1$
5. $f(x)=7^{-\frac{3}{2} x}+3$
6. $f(x)=\frac{1}{3} \cdot e^{-x}-9$
7. $f(x)=5 \cdot\left(\frac{4}{5}\right)^{x+3}$

Directions: Graph each function, then identify its key characteristics.
8. $f(x)=\frac{1}{2} \cdot 5^{-x}-1$

Domain:
Range:
y-intercept:
Asymptote:
Increasing Interval:
Decreasing Interval:

End Behavior:

-- Vొొi̊ \ddagger--

 Homework

Exponential Growth and Decay

1. Aaron owns a rare baseball card. He bought the card for $\$ 7.50$ in 1987 and its value increases by 6% each year. Write and use an exponential growth function to find the baseball card's value in 2015.
2. Jennifer started working at her job earning $\$ 6.25$ per hour. Every six months, she gets a 3.25% raise. If Jennifer has worked at the job for 14 years, what is her hourly rate?
3. In 2005, the Summerville Journal had 110,000 subscriptions. The number of subscriptions subsequently decreased by 8% each year. Write and use an exponential decay function to find the number of subscriptions in 2022.
4. In November, 26 students at Monarch High School had contracted the flu. Each month, the number of students who have contracted the flu increases by 36%. Write and use an exponential growth function to find the total number of students who have contracted the flu by May.
5. Ian bought a new truck for $\$ 35,000$ in 2015. Each year, the value of the truck depreciates by 9%. Write and use an exponential growth function to find the value of his truck at the end of his 60-month loan.
6. A certain compound has a half-life of four days. Write and use an exponential decay function to find the amount of compound remaining from a 75 -ounce sample after three weeks.

Continuous Growth and Decay

7. A 4 -foot tree was planted in 1984. The tree grows continuously by 22% each year from this point forward. Find the height of the tree after 8 years.
8. An ice sculpture measures 52 inches and melts continuously by 3% per minute. Find the height of a sculpture after 15 minutes.
9. In 2002, a certain town recorded 15,300 acres of undeveloped land. Each year after, the amount of land decreased by 7% due to residential and commercial development. Find the approximate amount of undeveloped land in 2013.

Logistic Growth

10. The population of fish in a pond from 2001 to 2014 is modeled by the function below, where t is the years since 2001. Using the function, find the number of fish in the pond in 2014.
$P(t)=\frac{1125}{1+12 e^{-0.17 t}}$
11. The bears in Alaska are limited to a certain area to live due to the resources available for food and shelter. After t years, the number of bears living in the area is modeled by the function below. Using the function, find the number of bears after 17 years.
$f(t)=\frac{103}{1+26 e^{-0.31 t}}$

| Compound Interest |
| :--- | :--- |
| 1. If $\$ 1,800$ is deposited into an account earning 6% interest, how much will be in the account at
 the end of 18 years if the interest is compounded with the following frequencies:
 a) quarterly
 |

2. Erica was given $\$ 300$ for her birthday and decided to put it in a savings account that earns 3.75% interest. If she makes no other deposits or withdrawals, find her account balance after ten years if the interest is compounded with the following frequencies.
a) semiannually
b) daily
3. A $\$ 2,750$ deposit was made to an account earning $2 \frac{3}{4} \%$ annual interest compounded weekly. If no other deposits or withdrawals are made, find the balance of the account after nine years.

Continuous Compound Interest

7. Moises was given a $\$ 1,500$ signing bonus at his new job. He is going to invest this money in an account that earns 6% interest, compounded continuously. Find the account balance after ten years.
8. Suppose $\$ 2,800$ is deposited into an account at a 2.5% interest rate, compounded continuously. If there are no other deposits or withdrawals, find the account balance after 25 years.
9. Find the balance of an account after seven years if $\$ 600$ is deposited and the interest rate is 11.25% per year, compounded continuously and no other deposits or withdrawals are made.

Date

$\omega /$ Exponential Functions

Financial Advisor

Jorge is working with a client who has received an inheritance of $\$ 50,000$. The client wants to purchase mutual funds and wants to diversify the investments between four categories. They have asked him to invest at least $\$ 10,000$ into each of the categories, but they'd like his recommendation for how to use the rest. With the formula:

$$
F V=P V(1+r)^{t} \quad \text { where } F V \text { is future value, } P V \text { is present value, } r \text { is the rate and } t \text { is the time in years }
$$

Jorge makes 30 year portfolio value estimates for each client with formulas for Best Case and Worst Case scenarios. Help Jorge decide where the other $\$ 10,000$ should go and determine the projections for each case.

	Bond (Low Risk)	International (High Risk)	Small Cap (Medium Risk)	S \& P 500 (Medium Risk)
Best Case	$P V(1+0.052)^{t}$	$P V(1+0.121)^{t}$	$P V(1+0.083)^{t}$	$P V(1+0.091)^{t}$
Worst Case	$P V(1+0.049)^{t}$	$P V(1-0.009)^{t}$	$P V(1+0.028)^{t}$	$P V(1+0.026)^{t}$

Use this space to make any calculations and show work.

Interpret the Evidence. What does it mean?

Cоисlusion
or Recammeиdation

Name

Exponential Function Modeling

Date

Backeround

Raul is an executive for Major League Soccer. The league desires to expand in new markets, and he is evaluating the growth of the different cities in regards to population (potential total fans) and the GDP per capita (potential corporate sponsors and season ticket holders). He has exponential models for these statistics, and he would like to evaluate them in the next five years.

Which city appears to have the most promise for potential expansion?

	Cincinnati	Indianapolis	Phoenix	San Diego	Tampa
Population $p(x)$	$298,800 e^{0.017 t}$	$864,800 e^{0.015 t}$	$1,615,000 e^{0.021 t}$	$1,407,000 e^{0.004 t}$	$378,200 e^{0.032 t}$
Economy $f(x)$	$52,063 e^{0.02 t}$	$53,441 e^{0.019 t}$	$44,803 e^{0.021 t}$	$57,955 e^{0.016 t}$	$40,153 e^{0.016 t}$

Use this space to make any calculations and show work.

