
3. $[-9,7]$
4. $[-2,0]$

Ok, so we know the original one is a cubic function.

We also know it is stretched and shifted to the left 1 and down 1.
Sweet, we have the function. Now what?
Well, you are trying to find the average rate of change over [-9,7] You can also say this as the change over -9 and 7.

Which means what?
It means the slope of the line between wherever (-9) on the x-axis is and 7 on the x-axis.

1sn't there an equation?
Sure there is. If you remember, the equation for slope is $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
For rate of change it is the same but they term it $\mathrm{m}=\frac{f(b)-f(a)}{b-a}{ }^{x_{2}-x_{1}}$
How is that the same?
Remember that a function can also be written as an expression replacing the $f(x)$ with " y " You can replace your interval numbers with the two x-values.

Let's make it easier and give them variables. $a\left(\right.$ or $\left.x_{1}\right)=-9$ and $b\left(\right.$ or $\left.x_{2}\right)=7$. and $f(a)=2(-9+1)^{1 / 3}-1 . f(b)=2(7+1)^{1 / 3}-1$

Can't l just find " y " on the graph?
YES
Either way, find your $f(x)$ or " y " values and then plug them into the equation and ta-da!

