

POWCTS
 0 (\}

Addition: You must have the same base, then combine like
TERMS

$$
z^{4} \xi^{4} \mathfrak{z}^{8} a^{8}
$$

SUbTracting: Just like with addition, you must have the same BASE.

$$
3 x^{4} \underbrace{2} x^{4}=2 x^{4}
$$

MULTiplying: multiply The number of UnkNowns, THEN ADD EXPONENTS

$$
\left(x^{4}\right)\left(x^{2}\right)=x^{4} x^{2} x^{2}=x^{2}
$$

DIVIDING: SUBTRACT THE EXPONENTS

$$
\frac{4 x^{4}}{2 x^{2}}=2 x^{4} \cdot 2=2 x^{2}
$$

POWER TO A POWER: MULTIPLY THE EXPONENTS

$$
\left(\mathbb{K}^{4}\right)^{2}=\mathbb{X}^{409}=\mathbb{K}^{8}
$$

XOALWAYS EQUALS 1

FACTOR $6 m^{2}-25 m-9$

Ok, 2 ways to tackle this:

- Find factors of 6 and 9 .
- Realize that in order to reverse distribute this, one of the factors of 6
$6 m^{2}-25 m-9$ multiplied by a factor of 9 and then added together, must equal - 25 .
- Create your two factors and start plugging in the numbers.

$$
\begin{aligned}
& (3 m+3)(2 m-3) \\
& (2 m+3)(3 m-3) \\
& (6 m+3)(1 m-3) \\
& (1 m+3)(6 m-3)
\end{aligned}
$$

- Determine which one works with the FOIL method.

$$
\begin{aligned}
& (3 m+1)(2 m-9) \\
& (2 m+9)(3 m-1) \\
& (6 m+9)(1 m-1) \\
& (1 m+1)(6 m-9)
\end{aligned}
$$

FACTOR $6 m^{2}-25 m-9$

Since the leading coefficient isn't a " 1 " (it is a " 6 "), this can be a little more complicated.

You decide which method is easiest for you!

- Find factors of (6)(9) = 54 that add up to -25 .
- We will use -27 and +2
- Then we can split that middle term (-25m) into 2 terms

$$
6 m^{2}-27 m+2 m-9
$$

- Now, factor in pairs

$$
\begin{aligned}
& \left(6 m^{2}-27 m\right)+(2 m-9) \\
& 3 m(2 m-9)+1(2 m-9)
\end{aligned}
$$

- Since they both have ($2 \mathrm{~m}-9$), you can combine the others to form the answer.

Personally, I think this way is simpler, but if you did not originally learn this way, it may take some getting used to.

Solve each equation.

1. $x^{3}+216=0$
2. $3 x^{4}-3888=0$
3. $x^{3}-512=0$
4. $5 x^{3}+625=0$
5. $x^{4}-256=0$
6. $2 x^{5}-64=0$
7. $x^{3}-1331=0$
8. $5 x^{5}-500000=0$
9. $x^{4}-2401=0$

Simplify each expression and write in scientific notation.

1. $\frac{6 \cdot 10^{5}}{3 \cdot 10^{2}}$ \qquad 6. $\frac{3 \cdot 10^{8}}{1 \cdot 10^{2}}$
2. $\frac{12 \cdot 10^{11}}{2 \cdot 10^{4}}$ \qquad 7. $\frac{25 \cdot 10^{6}}{5 \cdot 10^{9}}$
3. $\frac{8 \cdot 10^{15}}{4 \cdot 10^{6}}$

4. $\frac{14 \cdot 10^{7}}{2 \cdot 10^{1}}$
5. $\frac{15 \cdot 10^{4}}{5 \cdot 10^{0}}$
6. $\frac{9 \cdot 10^{14}}{9 \cdot 10^{6}}$

-

9. $\frac{20 \cdot 10^{12}}{5 \cdot 10^{3}}$
10. $\frac{2 \cdot 10^{8}}{1 \cdot 10^{2}}$
11. 0.0098 \qquad
12. 0.00425 \qquad
13. $230,000,000$ \qquad 15. 186,000
14. 0.000000023 \qquad 16. $93,000,000$
15. $2,935.00026$
16. 78,005,261.0003

Write each number in standard notation

17. $4.2 \cdot 10^{8}$
18. $9.7 \cdot 10^{3}$
19. $1.8 \cdot 10^{7}$
\qquad
20. $3.6 \cdot 10^{-5}$ \qquad
21. $4.8775 \cdot 10^{10}$
22. $2.01 \cdot 10^{12}$
23. $6.032 \cdot 10^{-3}$
24. $7.5 \cdot 10^{-8}$
