

ADDITION: YOU MUST HAVE THE SAME BASE, THEN COMBINE LIKETERMS $X^4 \oplus X^4 \cong X^8$

SUBTRACTING: JUST LIKE WITH ADDITION, YOU MUST HAVE THE SAME BASE. $\Im \underline{x}^4 \oplus \underline{x}^4 \equiv 2 \underline{x}^4$

MULTIPLYING: MULTIPLY THE NUMBER OF UNKNOWNS, THEN ADDEXPONENTS $(X^4)(X^2) \cong X^{4+2} \cong X^6$

DIVIDING: SUBTRACT THE EXPONENTS $\frac{4X^4}{2X^2} = 2X^{4-2} = 2X^2$

POWER TO A POWER: MULTIPLY THE EXPONENTS $(X^4)^2 \cong X^{4^2} \cong X^8$

X^O ALWAYS EQUALS 1

NEGATIVE EXPONENTS: $X^{2} \cong 1$

FACTOR $6m^2 - 25m - 9$

Ok, 2 ways to tackle this:

- Find factors of 6 and 9.
- Realize that in order to reverse distribute this, one of the factors of 6 multiplied by a factor of 9 and then added together, must equal -25.
- Create your two factors and start plugging in the numbers.
- Determine which one works with the FOIL method.

$$6m^2 - 25m - 9$$
3, 2
3, 3
6, 1
9, 1

Factor $6m^2 - 25m - 9$

Since the leading coefficient isn't a "1" (it is a "6"), this can be a little more complicated.

You decide which method is easiest for you!

- Find factors of (6)(9) = 54 that add up to -25.
- We will use -27 and +2
- Then we can split that middle term (-25m) into 2 terms

 $6m^2 - 27m + 2m - 9$

• Now, factor in pairs

 $\frac{(6m^2 - 27m) + (2m - 9)}{3m(2m - 9) + 1(2m - 9)}$

• Since they both have (2m-9), you can combine the others to form the answer.

$$\frac{3m(2m-9) + 1(2m-9)}{(3m+1)(2m-9)}$$

Personally, I think this way is simpler, but if you did not originally learn this way, it may take some getting used to.

Solve each equation.

1. $x^3 + 216 = 0$	
	6. $3x^4 - 3888 = 0$
2. $x^3 - 512 = 0$	7. $5x^3 + 625 = 0$
3. $x^4 - 256 = 0$	
4 3 4004 0	8. $2x^5 - 64 = 0$
4. $x^3 - 1331 = 0$	9. $5x^5 - 500000 = 0$
5. $x^4 - 2401 = 0$	

Simplify each expression and write in scientific notation.

1. $\frac{6 \cdot 10^5}{3 \cdot 10^2}$	1 <u></u>	6. $\frac{3 \cdot 10^8}{1 \cdot 10^2}$	
2. $\frac{12 \cdot 10^{11}}{2 \cdot 10^4}$		7. $\frac{25 \cdot 10^6}{5 \cdot 10^9}$	
3. $\frac{8 \cdot 10^{15}}{4 \cdot 10^6}$		8. $\frac{14 \cdot 10^7}{2 \cdot 10^1}$	
4. $\frac{15 \cdot 10^4}{5 \cdot 10^0}$		9. $\frac{20 \cdot 10^{12}}{5 \cdot 10^3}$	
5. $\frac{9 \cdot 10^{14}}{9 \cdot 10^6}$		10. $\frac{2 \cdot 10^8}{1 \cdot 10^2}$	
5. 0.0098	·	13. 2,935.00026	
6. 0.00425		14. 78,005,261.0003	2
7. 230,000,000		15. 186,000	
8. 0.00000023		16. 93,000,000	
Write each number in standard notation			
17. 4.2 · 10 ⁸		25. 4.8775 · 10 ¹⁰	
18. 9.7 · 10 ³	. <u></u>	26. 2.01 · 10 ¹²	
19. 1.8 \cdot 10 ⁷		27. 6.032 \cdot 10 ⁻³	

28. 7.5 \cdot 10⁻⁸

20. 3.6 \cdot 10⁻⁵